utils.py 1.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import evaluate
import datasets

def strip(resps, docs):
    """
    Assuming each entry of `resps` is a list of model responses, we discard all but the first response.
    """
    return map(lambda r: r[0].strip(), resps)


def doc_to_text(doc):
    doc_text = doc["messages"][0]["content"].replace("لخص هاد المقطع", "لخص هاد المقطع في ٣٠ كلمة")
    return doc_text

def doc_to_target(doc):
    return doc["messages"][1]["content"]

def bert(items):
    return items

def Average(lst):
        return sum(lst) / len(lst)

def darijabert(items):
    bert_model = 'SI2M-Lab/DarijaBERT'
    bert_score = evaluate.load("bertscore")
    predictions, references = zip(*items)
    bert = bert_score.compute(predictions=predictions, references=references, model_type=bert_model, num_layers=12)
    return Average(bert['f1'])

def rouge1(items):
    return items
def rougeL(items):
    return items
def rouge2(items):
    return items
def rougeLsum(items):
    return items

def agg_rougelsum(items):
    rouge = evaluate.load("rouge")
    predictions, references = zip(*items)
    return rouge.compute(predictions=predictions, references=references)["rougeLsum"]

def agg_rouge1(items):
    rouge = evaluate.load("rouge")
    predictions, references = zip(*items)
    return rouge.compute(predictions=predictions, references=references)["rouge1"]

def agg_rouge2(items):
    rouge = evaluate.load("rouge")
    predictions, references = zip(*items)
    return rouge.compute(predictions=predictions, references=references)["rouge2"]

def agg_rougel(items):
    rouge = evaluate.load("rouge")
    predictions, references = zip(*items)
    return rouge.compute(predictions=predictions, references=references)["rougeL"]