unscramble.py 2.76 KB
Newer Older
Jon Tow's avatar
Jon Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import gzip
import json
import shutil
from pathlib import Path
from best_download import download_file
from lm_eval.base import Task, rf
from lm_eval.metrics import mean


def extract_gzip(gz, to):
    with gzip.open(gz, 'rb') as fin:
        with open(to, 'wb') as fout:
            shutil.copyfileobj(fin, fout)


16
17
class WordUnscrambleTask(Task):
    BASE_PATH = Path("data/unscramble")
Jon Tow's avatar
Jon Tow committed
18
19
20
21
22
23
24
25
    FILENAME = None
    CHECKSUM = None  # SHA256 Checksum.

    def __init__(self):
        super().__init__()

    def download(self):
        if not self.BASE_PATH.exists():
Leo Gao's avatar
Leo Gao committed
26
            Path.mkdir(self.BASE_PATH, parents=True)
Jon Tow's avatar
Jon Tow committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        file = self.BASE_PATH / self.FILENAME
        if not file.exists():
            rawfile = file.parent / (file.name + ".gz")
            base_url = "https://raw.githubusercontent.com/openai/gpt-3/master/data"
            download_file(f"{base_url}/{self.FILENAME}.gz", str(rawfile), self.CHECKSUM)
            extract_gzip(gz=rawfile, to=file)

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def validation_docs(self):
        file = self.BASE_PATH / self.FILENAME
        return (json.loads(line) for line in open(file).read().splitlines())

    def fewshot_description(self):
        return "Please unscramble the letters into a word, and write that word:"

    def doc_to_text(self, doc):
        return doc["context"]

    def doc_to_target(self, doc):
        return doc["completion"]

    def construct_requests(self, doc, ctx):
        completion = rf.greedy_until(ctx, ["\n"])
        return completion

    def process_results(self, doc, results):
        pred = results[0]
        gold = doc["completion"]
        return {
            "acc": int(pred == gold)
        }

    def aggregation(self):
        return {
            "acc": mean
        }

    def higher_is_better(self):
        return {
            "acc": True
        }


78
class Anagrams1(WordUnscrambleTask):
Jon Tow's avatar
Jon Tow committed
79
80
81
82
    FILENAME = "mid_word_1_anagrams.jsonl"
    CHECKSUM = "6768a86896083199de4815d4964cb2f6f1046476cfd80c2a562784f182905979"


83
class Anagrams2(WordUnscrambleTask):
Jon Tow's avatar
Jon Tow committed
84
85
    FILENAME = "mid_word_2_anagrams.jsonl"
    CHECKSUM = "c3d839d09a7954b78a27cd2cd75d4ed0488656c56ef4dbd741a005343826cb01"
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


class CycleLetters(WordUnscrambleTask):
    FILENAME = "cycle_letters_in_word.jsonl"
    CHECKSUM = "1689c9002bb8c5988bf5f05e977c9db92f57932c1b5a38998c29ac0dd71e1d42"


class RandomInsertion(WordUnscrambleTask):
    FILENAME = "random_insertion_in_word.jsonl"
    CHECKSUM = "72e65d83da53d15752ee0c47379509de149ddbad32d61184e5991df29616b78a"


class ReversedWords(WordUnscrambleTask):
    FILENAME = "reversed_words.jsonl"
    CHECKSUM = "133a08f875cd6c1ef8608a3233571a773881cc27b1c707de738cc6543439332a"