metrics.py 11.9 KB
Newer Older
&'s avatar
& committed
1
import math
2
3
4
5
6
from collections.abc import Iterable

import numpy as np
import sacrebleu
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
lintangsutawika's avatar
lintangsutawika committed
8
import evaluate
&'s avatar
& committed
9

10
11
from lm_eval.api.registry import register_metric, register_aggregation

12
import logging
lintangsutawika's avatar
lintangsutawika committed
13

14
eval_logger = logging.getLogger("lm-eval")
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

class BaseMetric:
    def __init__(
        self,
        aggregation=None,
    ) -> None:
        self.aggregation = aggregation

    def __call__(self, *items):

        sample_wise_score = self.sample_wise_compute(*items)

        if self.aggregation is not None:
            return self.aggregation(sample_wise_score)
        else:
            return self.set_wise_compute(sample_wise_score)

    def sample_wise_compute(self, *items):
        return items

    def set_wise_compute(self, *items):
        return items


40
41
42
43
44
45
46
47
48
49
50
# Register Aggregations First
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


51
52
53
54
55
56
57
58
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
)
class PerplexityMetric(BaseMetric):
    def sample_wise_compute(self, ll, is_greedy):
        return ll
59

60
61
    def set_wise_compute(self, items):
        return math.exp(-mean(items))
62
63


64
65
66
67
68
69
70
71
72
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
class LoglikelihoodAccMetric(BaseMetric):
    def __call__(self, ll, is_greedy):
        return int(is_greedy)
73
74


haileyschoelkopf's avatar
haileyschoelkopf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


143
144
145
146
147
148
149
150
# @register_metric(
#     metric="acc",
#     higher_is_better=True,
#     output_type=["loglikelihood", "multiple_choice"],
#     aggregation="mean",
# )
# def acc_fn(items):  # This is a passthrough function
#     return items
151
152


153
154
155
156
157
158
159
160
# @register_metric(
#     metric="acc_norm",
#     higher_is_better=True,
#     output_type=["loglikelihood", "multiple_choice"],
#     aggregation="mean",
# )
# def acc_norm_fn(items):  # This is a passthrough function
#     return items
161
162


163
164
165
166
167
168
169
170
# @register_metric(
#     metric="acc_mutual_info",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="mean",
# )
# def acc_mutual_info_fn(items):  # This is a passthrough function
#     return items
171
172


173
174
175
exact_match = evaluate.load("exact_match")


176
177
178
179
180
181
182
183
# @register_metric(
#     metric="exact_match",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="mean",
# )
# def exact_match_fn(**kwargs):
#     return exact_match.compute(**kwargs)
184
185
186
187
188
189
190


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
191
192
193
194
195
196
class BytePerplexityMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _words

    def set_wise_compute(self, items):
        return math.exp(-weighted_mean(items))
197
198
199
200
201
202
203


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
204
205
206
207
208
209
class BytePerplexityMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _bytes

    def set_wise_compute(self, items):
        return math.exp(-weighted_mean(items))
210
211
212
213
214
215
216


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
217
218
219
220
221
222
class BitsPerByteMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _bytes

    def set_wise_compute(self, items):
        return -weighted_mean(items) / math.log(2)
223

&'s avatar
& committed
224

Leo Gao's avatar
Leo Gao committed
225
def pop_stddev(arr):
226
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
227
228
229
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
230
def sample_stddev(arr):
231
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
232
233
234
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
235
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
236
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
237
238


239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# @register_metric(
#     metric="mcc",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="matthews_corrcoef",
# )
# def mcc_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="f1",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="f1",
# )
# def f1_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="bleu",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="bleu",
# )
# def bleu_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="chrf",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="chrf",
# )
# def chrf_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="ter",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="ter",
# )
# def ter_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="acc_all",
#     higher_is_better=True,
#     output_type="loglikelihood",
#     aggregation="mean",
# )
# def acc_all(items):
#     # Only count as correct if all answers are labeled correctly for each question
#     question_scoring_dict = {}
#     preds = list(zip(*items))[0]
#     docs = list(zip(*items))[1]

#     for doc, pred in zip(docs, preds):
#         paragraph_id = doc["idx"]["paragraph"]
#         question_id = doc["idx"]["question"]
#         if (paragraph_id, question_id) not in question_scoring_dict:
#             question_scoring_dict[(paragraph_id, question_id)] = []

#         gold_label = doc["label"] == 1

#         question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
#     acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
#     return acc
312
313


Leo Gao's avatar
Leo Gao committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
331
332
333
334
335
336
337
338
339
340

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
381
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
382
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
383
384
        self.f = f
        self.n = n
385

Leo Gao's avatar
Leo Gao committed
386
387
388
389
390
391
392
393
394
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
395

396
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
397
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
398

Leo Gao's avatar
Leo Gao committed
399
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
400
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
401
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
402
403
404
405
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
406
    res = []
407
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
408
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
409

Leo Gao's avatar
Leo Gao committed
410
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
411
412
    for bootstrap in tqdm(
        pool.imap(
413
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
414
415
416
417
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
418
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
419
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
420

Leo Gao's avatar
Leo Gao committed
421
    pool.close()
Leo Gao's avatar
Leo Gao committed
422
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
423
424


425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)