lambada.py 3.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
The LAMBADA dataset: Word prediction requiring a broad discourse context∗
https://arxiv.org/pdf/1606.06031.pdf

LAMBADA is a dataset to evaluate the capabilities of computational models for text
understanding by means of a word prediction task. LAMBADA is a collection of narrative
passages sharing the characteristic that human subjects are able to guess their last
word if they are exposed to the whole passage, but not if they only see the last
sentence preceding the target word. To succeed on LAMBADA, computational models
cannot simply rely on local context, but must be able to keep track of information
in the broader discourse.

Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
"""
15
from lm_eval.api.task import Task
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
17
from lm_eval.api.metrics import mean, perplexity
sdtblck's avatar
sdtblck committed
18
19


20
21
_CITATION = """
@misc{
Fabrizio Milo's avatar
Fabrizio Milo committed
22
    author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel},
23
24
25
26
27
28
29
    title={The LAMBADA dataset},
    DOI={10.5281/zenodo.2630551},
    publisher={Zenodo},
    year={2016},
    month={Aug}
}
"""
sdtblck's avatar
sdtblck committed
30
31


jon-tow's avatar
jon-tow committed
32
33
class LambadaBase(Task):
    VERSION = None
sdtblck's avatar
sdtblck committed
34

35
36
    OUTPUT_TYPE = "loglikelihood"

sdtblck's avatar
sdtblck committed
37
    def training_docs(self):
jon-tow's avatar
jon-tow committed
38
39
        if self.has_training_docs():
            return self.dataset["train"]
sdtblck's avatar
sdtblck committed
40
41

    def validation_docs(self):
jon-tow's avatar
jon-tow committed
42
43
        if self.has_validation_docs():
            return self.dataset["validation"]
Leo Gao's avatar
Leo Gao committed
44

Leo Gao's avatar
Leo Gao committed
45
    def test_docs(self):
jon-tow's avatar
jon-tow committed
46
47
        if self.has_test_docs():
            return self.dataset["test"]
Leo Gao's avatar
Leo Gao committed
48

Leo Gao's avatar
Leo Gao committed
49
    def doc_to_text(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
50
        return doc["text"].rsplit(" ", 1)[0]
sdtblck's avatar
sdtblck committed
51

52
53
54
55
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
56
        return doc["text"]
57

Leo Gao's avatar
Leo Gao committed
58
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
59
        return " " + doc["text"].rsplit(" ", 1)[1]
sdtblck's avatar
sdtblck committed
60

61
    def construct_requests(self, doc, ctx, **kwargs):
haileyschoelkopf's avatar
haileyschoelkopf committed
62
        return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=(ctx, self.doc_to_target(doc)), **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
63

Leo Gao's avatar
Leo Gao committed
64
    def process_results(self, doc, results):
65
66
        # TODO: this ^ is a hack. filters should make it so that we only have one response per request that we score
        results = results[0] # TODO: recheck this. currently a list of [(ll, is_greedy)] is passed in
Leo Gao's avatar
Leo Gao committed
67
        ll, is_greedy = results
Leo Gao's avatar
Leo Gao committed
68

Fabrizio Milo's avatar
Fabrizio Milo committed
69
70
        return {"ppl": ll, "acc": int(is_greedy)}

Leo Gao's avatar
Leo Gao committed
71
    def aggregation(self):
Fabrizio Milo's avatar
Fabrizio Milo committed
72
        return {"ppl": perplexity, "acc": mean}
Leo Gao's avatar
Leo Gao committed
73
74

    def higher_is_better(self):
Fabrizio Milo's avatar
Fabrizio Milo committed
75
        return {"ppl": False, "acc": True}
jon-tow's avatar
jon-tow committed
76
77
78
79
80


class LambadaStandard(LambadaBase):
    """The LAMBADA task using the standard original LAMBADA dataset."""

81
    VERSION = "2.0"
jon-tow's avatar
jon-tow committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    DATASET_PATH = "lambada"

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True


class LambadaOpenAI(LambadaBase):
    """The LAMBADA task using the LAMBADA OpenAI dataset, a modified version of the
    original LAMBADA dataset created by OpenAI for evaluating their GPT-2 model.

    Reference: https://github.com/openai/gpt-2/issues/131#issuecomment-497136199
    """

101
    VERSION = "2.0"
102
    DATASET_PATH = "EleutherAI/lambada_openai"
jon-tow's avatar
jon-tow committed
103
104
105
106
107

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
108
        return False
jon-tow's avatar
jon-tow committed
109
110

    def has_test_docs(self):
111
        return True