"official/nlp/transformer/translate.py" did not exist on "a19f2f8b1a4f855b89300333dc5d8ccad891e802"
gpt3.py 9.29 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import os
Jason Phang's avatar
Jason Phang committed
2
import numpy as np
Jason Phang's avatar
gpt3  
Jason Phang committed
3
import transformers
4
from lm_eval.base import BaseLM
Jason Phang's avatar
lib  
Jason Phang committed
5
from lm_eval import utils
Leo Gao's avatar
Leo Gao committed
6
from tqdm import tqdm
Leo Gao's avatar
Leo Gao committed
7
import time
Leo Gao's avatar
Leo Gao committed
8
9
10


def get_result(response, ctxlen):
11
12
13
14
15
16
17
18
19
20
21
22
    """Process results from OpenAI API response.

    :param response: dict
        OpenAI API Response
    :param ctxlen: int
        Length of context (so we can slice them away and only keep the predictions)
    :return:
        continuation_logprobs: np.array
            Log probabilities of continuation tokens
        is_greedy: bool
            whether argmax matches given continuation exactly
    """
Leo Gao's avatar
Leo Gao committed
23
    is_greedy = True
Leo Gao's avatar
Leo Gao committed
24
    logprobs = response["logprobs"]["token_logprobs"][:-1]
Leo Gao's avatar
Leo Gao committed
25
    continuation_logprobs = sum(logprobs[ctxlen:])
Leo Gao's avatar
Leo Gao committed
26
    # print(logprobs[ctxlen:])
Leo Gao's avatar
Leo Gao committed
27

Leo Gao's avatar
Leo Gao committed
28
29
30
    for i in range(ctxlen, len(response["logprobs"]["tokens"][:-1])):
        token = response["logprobs"]["tokens"][:-1][i]
        top_tokens = response["logprobs"]["top_logprobs"][:-1][i]
Leo Gao's avatar
Leo Gao committed
31
32
33
34
35
36
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break
    
    return continuation_logprobs, is_greedy
Jason Phang's avatar
gpt3  
Jason Phang committed
37
38


Leo Gao's avatar
Leo Gao committed
39
40
41
class _goose:
    choices: list

Leo Gao's avatar
Leo Gao committed
42
def oa_completion(**kwargs):
43
    """ Query OpenAI API for completion.
Leo Gao's avatar
Leo Gao committed
44

45
46
47
    Retry with back-off until they respond
    """
    import openai
Leo Gao's avatar
Leo Gao committed
48
    backoff_time = 3
Leo Gao's avatar
Leo Gao committed
49
50
51
52
53
54
55
56
57
58
59
60
    # print(kwargs)
    if len(kwargs["prompt"]) > 1 and isinstance(kwargs["prompt"], list):
        import dask
        res = []
        for pmpt in kwargs["prompt"]:
            k = kwargs.copy()
            k["prompt"] = [pmpt]
            res.append(dask.delayed(oa_completion)(**k))
        r = dask.compute(*res)
        ob = _goose()
        ob.choices = [x.choices[0] for x in r]

Leo Gao's avatar
Leo Gao committed
61
62
    while True:
        try:
Leo Gao's avatar
Leo Gao committed
63
64
65
            ret = openai.Completion.create(**kwargs)
            # print(ret.choices[0])
            return ret
Leo Gao's avatar
Leo Gao committed
66
        except openai.error.OpenAIError:
Leo Gao's avatar
Leo Gao committed
67
68
            import traceback
            traceback.print_exc()
Leo Gao's avatar
Leo Gao committed
69
70
71
72
            time.sleep(backoff_time)
            backoff_time *= 1.5


Leo Gao's avatar
Leo Gao committed
73
class GPT3LM(BaseLM):
Leo Gao's avatar
Leo Gao committed
74
    REQ_CHUNK_SIZE = 20
Jason Phang's avatar
Jason Phang committed
75

Leo Gao's avatar
Leo Gao committed
76
    def __init__(self, engine, truncate=False, api_key=None, pass_strings=False):
Jason Phang's avatar
Jason Phang committed
77
78
79
80
81
82
83
        """

        :param engine: str
            OpenAI API engine (e.g. davinci)
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
Leo Gao's avatar
Leo Gao committed
84
        super().__init__()
85

Leo Gao's avatar
Leo Gao committed
86
87
        assert pass_strings, "so far, this branch only supports GooseAI, and won't work with the regular OpenAI api. this is mostly because there are still some remaining differences between the two apis that make this more complicated than just a drop in replacement. there's no fundamental reason why I couldn't support both on the same branch right now, but it would be a lot of work, and once gooseai finally makes their api conform to the openai api then we won't need this branch anymore and I'll implement something more simple once that does actually happen."

Jason Phang's avatar
Jason Phang committed
88
        import openai
Jason Phang's avatar
gpt3  
Jason Phang committed
89
        self.engine = engine
90
        self.tokenizer = transformers.GPT2TokenizerFast.from_pretrained('gpt2')
Leo Gao's avatar
Leo Gao committed
91
        self.pass_strings = pass_strings
Leo Gao's avatar
Leo Gao committed
92

93
        self.vocab_size = self.tokenizer.vocab_size
Leo Gao's avatar
Leo Gao committed
94

Leo Gao's avatar
Leo Gao committed
95
96
        # to make the annoying "Using pad_token, but it is not set yet." error go away
        self.tokenizer.pad_token = "<|endoftext|>"
Leo Gao's avatar
Leo Gao committed
97
        assert self.tokenizer.encode('hello\n\nhello') == [31373, 198, 198, 31373]
Jason Phang's avatar
Jason Phang committed
98
        self.truncate = truncate
Jason Phang's avatar
Jason Phang committed
99
        self.end_of_text_token_id = self.tokenizer.convert_tokens_to_ids(["<|endoftext|>"])[0]
Jason Phang's avatar
Jason Phang committed
100

Jason Phang's avatar
gpt3  
Jason Phang committed
101
        # Read from environment variable OPENAI_API_SECRET_KEY
Leo Gao's avatar
Leo Gao committed
102
        openai.api_key = api_key or os.environ["OPENAI_API_SECRET_KEY"]
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    @property
    def eot_token_id(self):
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        # Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
        return 2048

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

127
128
129
130
131
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
    
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)
Leo Gao's avatar
Leo Gao committed
132

133
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
Leo Gao's avatar
Leo Gao committed
134
135
        res = []

136
        def _collate(x):
Leo Gao's avatar
Leo Gao committed
137
138
139
            # this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
            # it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
            # we care about and so we need some kind of backup for when it isn't
Leo Gao's avatar
Leo Gao committed
140
            toks = x[1] + x[2]
141
            return -len(toks), tuple(toks)
142
143
        
        reord = utils.Reorderer(requests, _collate)
Jason Phang's avatar
Jason Phang committed
144

145
        for chunk in tqdm(list(utils.chunks(reord.get_reordered(), self.REQ_CHUNK_SIZE)), disable=disable_tqdm):
Leo Gao's avatar
Leo Gao committed
146
147
            inps = []
            ctxlens = []
Leo Gao's avatar
Leo Gao committed
148
            for cache_key, context_enc, continuation_enc in chunk:
149
150
151
152
                # max_length+1 because the API takes up to 2049 tokens, including the first context token
                inp = (context_enc + continuation_enc)[-(self.max_length+1):]
                # TODO: the logic is much simpler if we just look at the length of continuation tokens
                ctxlen = len(context_enc) - max(0, len(context_enc) + len(continuation_enc) - (self.max_length+1))
Leo Gao's avatar
Leo Gao committed
153

Leo Gao's avatar
Leo Gao committed
154
                # print(inp)
Leo Gao's avatar
Leo Gao committed
155
156
                if self.pass_strings:
                    inp = self.tok_decode(inp)
Leo Gao's avatar
Leo Gao committed
157
158
159
                inps.append(inp)
                ctxlens.append(ctxlen)

Leo Gao's avatar
Leo Gao committed
160
            response = oa_completion(
Leo Gao's avatar
Leo Gao committed
161
162
163
                engine=self.engine,
                prompt=inps,
                echo=True,
Leo Gao's avatar
Leo Gao committed
164
                max_tokens=1,
Leo Gao's avatar
Leo Gao committed
165
166
167
                logprobs=10,
            )

Leo Gao's avatar
Leo Gao committed
168
            for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(response.choices, ctxlens, chunk):
Leo Gao's avatar
Leo Gao committed
169
170
171
172
173
                answer = get_result(resp, ctxlen)

                res.append(answer)

                # partial caching
Leo Gao's avatar
Leo Gao committed
174
175
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
Jason Phang's avatar
Jason Phang committed
176

177
        return reord.get_original(res)
Leo Gao's avatar
Leo Gao committed
178
179

    def greedy_until(self, requests):
180
181
        if not requests:
            return []
Leo Gao's avatar
Leo Gao committed
182
183
        res = []

184
        def _collate(x):
185
            toks = self.tok_encode(x[0])
186
            return len(toks), x[0]
187
188
189
        
        reord = utils.Reorderer(requests, _collate)

Leo Gao's avatar
Leo Gao committed
190
191
192
193
194
195
196
197
198
199
        def sameuntil_chunks(xs, size):
            ret = []
            lastuntil = xs[0][1]
            for x in xs:
                if len(ret) >= size or x[1] != lastuntil:
                    yield ret, lastuntil
                    ret = []
                    lastuntil = x[1]
                ret.append(x)
            
200
201
            if ret:
                yield ret, lastuntil
Leo Gao's avatar
Leo Gao committed
202

203
        # todo: more intelligent batching for heterogeneous `until`
204
        for chunk, until in tqdm(list(sameuntil_chunks(reord.get_reordered(), self.REQ_CHUNK_SIZE))):
Leo Gao's avatar
Leo Gao committed
205
206
            inps = []
            for context, _ in chunk:
207
208
                context_enc = self.tok_encode(context)
                inp = context_enc[-(self.max_length - self.max_gen_toks):]
Leo Gao's avatar
Leo Gao committed
209
                inps.append(self.tok_decode(inp))
Leo Gao's avatar
Leo Gao committed
210

Leo Gao's avatar
Leo Gao committed
211
            response = oa_completion(
Leo Gao's avatar
Leo Gao committed
212
                engine=self.engine,
Leo Gao's avatar
Leo Gao committed
213
                prompt=inps,
214
                max_tokens=self.max_gen_toks, 
Leo Gao's avatar
Leo Gao committed
215
                temperature=0.,
Leo Gao's avatar
Leo Gao committed
216
                # logprobs=10,
217
                stop=until,
Leo Gao's avatar
Leo Gao committed
218
            )
Leo Gao's avatar
Leo Gao committed
219

220
            for resp, (context, until_) in zip(response.choices, chunk):
Leo Gao's avatar
Leo Gao committed
221
                s = resp['text']
Leo Gao's avatar
Leo Gao committed
222

223
                for term in until_:
Leo Gao's avatar
Leo Gao committed
224
                    s = s.split(term)[0]
Leo Gao's avatar
Leo Gao committed
225

Leo Gao's avatar
Leo Gao committed
226
                # partial caching
227
                self.cache_hook.add_partial("greedy_until", (context, until_), s)
Leo Gao's avatar
Leo Gao committed
228
                
Leo Gao's avatar
Leo Gao committed
229
                res.append(s)
Leo Gao's avatar
Leo Gao committed
230
        
Leo Gao's avatar
Leo Gao committed
231
        return reord.get_original(res)
232
233
234
235
236
237
238
239

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override greedy_until
        raise NotImplementedError()
Leo Gao's avatar
Leo Gao committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267


class GooseAILM(GPT3LM):
    def __init__(self, engine, truncate=False, api_key=None, force_pile_tokenizer=False):
        super().__init__(engine, truncate=truncate, api_key=api_key or os.environ["GOOSEAI_API_SECRET_KEY"], pass_strings=True)
        self.REQ_CHUNK_SIZE = 1 
        import openai
        openai.api_base = "https://api.goose.ai/v1"

        from best_download import download_file

        if engine == "gpt-neo-20b" or force_pile_tokenizer:
            download_file("http://eaidata.bmk.sh/data/pile_tokenizer.json", expected_checksum="d27f071586925d23ef1c4acdee28fb8bf5d99c4a9d638b4e3b08812e3eae6ee7", local_file="pile_tokenizer.json")
            self.tokenizer = transformers.PreTrainedTokenizerFast(tokenizer_file="pile_tokenizer.json")
        

    @property
    def max_length(self):
        # Note: this is temporary, will be raised to 2048 in the future
        return 1023

    @property
    def eot_token_id(self):
        return self.tokenizer.eos_token_id

    @property
    def max_gen_toks(self):
        return 64