registry.py 3.61 KB
Newer Older
1
2
3
import os
import evaluate
from lm_eval.api.model import LM
4
5

import logging
lintangsutawika's avatar
lintangsutawika committed
6

7
eval_logger = logging.getLogger("lm-eval")
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

MODEL_REGISTRY = {}


def register_model(*names):
    # either pass a list or a single alias.
    # function receives them as a tuple of strings

    def decorate(cls):
        for name in names:
            assert issubclass(
                cls, LM
            ), f"Model '{name}' ({cls.__name__}) must extend LM class"

            assert (
                name not in MODEL_REGISTRY
            ), f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."

            MODEL_REGISTRY[name] = cls
        return cls

    return decorate


def get_model(model_name):
haileyschoelkopf's avatar
haileyschoelkopf committed
33
34
35
    try:
        return MODEL_REGISTRY[model_name]
    except KeyError:
36
37
38
        raise ValueError(
            f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}"
        )
39
40
41
42


TASK_REGISTRY = {}
GROUP_REGISTRY = {}
43
ALL_TASKS = set()
44
45
46
47
48
49
50
51
52
53
func2task_index = {}


def register_task(name):
    def decorate(fn):
        assert (
            name not in TASK_REGISTRY
        ), f"task named '{name}' conflicts with existing registered task!"

        TASK_REGISTRY[name] = fn
54
        ALL_TASKS.add(name)
55
56
57
58
59
60
61
62
63
64
65
66
67
        func2task_index[fn.__name__] = name
        return fn

    return decorate


def register_group(name):
    def decorate(fn):
        func_name = func2task_index[fn.__name__]
        if name in GROUP_REGISTRY:
            GROUP_REGISTRY[name].append(func_name)
        else:
            GROUP_REGISTRY[name] = [func_name]
68
            ALL_TASKS.add(name)
69
70
71
72
73
        return fn

    return decorate


lintangsutawika's avatar
lintangsutawika committed
74
METRIC_FUNCTION_REGISTRY = {}
75
76
77
HIGHER_IS_BETTER_REGISTRY = {}

DEFAULT_METRIC_REGISTRY = {
78
79
80
81
    "loglikelihood": [],
    "loglikelihood_rolling": [],
    "multiple_choice": [],
    "generate_until": [],
82
83
84
}


85
def register_metric(
lintangsutawika's avatar
lintangsutawika committed
86
    metric=None,
87
88
89
    higher_is_better=None,
    output_type=None,
):
90
91
92
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):

lintangsutawika's avatar
lintangsutawika committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        if type(metric) == str:
            metric_list = [metric]
        elif type(metric) == list:
            metric_list = metric

        for _metric in metric_list:
            METRIC_FUNCTION_REGISTRY[_metric] = fn

            if higher_is_better is not None:
                HIGHER_IS_BETTER_REGISTRY[_metric] = higher_is_better

            if output_type is not None:
                if type(output_type) == str:
                    output_type_list = [output_type]
                elif type(output_type) == list:
                    output_type_list = output_type

                for _output_type in output_type_list:
                    DEFAULT_METRIC_REGISTRY[_output_type].append(_metric)

113
114
115
116
117
        return fn

    return decorate


118
def get_metric(name, hf_evaluate_metric=False):
119

120
    if not hf_evaluate_metric:
lintangsutawika's avatar
lintangsutawika committed
121
122
        if name in METRIC_FUNCTION_REGISTRY:
            return METRIC_FUNCTION_REGISTRY[name]
123
124
125
126
        else:
            eval_logger.warning(
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
127

128
    try:
129
130
131
132
133
        metric_object = evaluate.load(name)
        return metric_object.compute
    except Exception:
        eval_logger.error(
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
134
135
136
        )


haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
def is_higher_better(metric_name):
    try:
        return HIGHER_IS_BETTER_REGISTRY[metric_name]
    except KeyError:
141
142
143
        eval_logger.warning(
            f"higher_is_better not specified for metric '{metric_name}'!"
        )