wsc273.py 4.36 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import json
import random
import os
from lm_eval.base import Dataset
from ..utils import sh


class WinogradSchemaChallenge273(Dataset):    
    def __init__(self):
        super().__init__()

    def download(self):
        if not os.path.exists('data/wsc273'):
            sh("""
                mkdir -p data/wsc273 
                wget https://git.cse.msu.edu/bakerb15/nlp-final-project/raw/master/Winogard/reproduce/commonsense_test/wsc273.json -O data/wsc273/wsc273.json
                """)

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def training_docs(self):
        return []

    def validation_docs(self):
        return []

    def test_docs(self):
        myjson = json.load(open('data/wsc273/wsc273.json'))
        return self.load_doc(myjson)
    
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
41
        # TODO: redo description
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."

    def load_doc(self, myjson):
        docs = []
        for i in range(0, 273 * 2, 2):
            item1 = myjson[i]
            item2 = myjson[i+1]

            if item1['question_id'] != item2['question_id']:
                raise ValueError("WSC273 has missing completion pair.")

            question_id = item1['question_id']

            if item1['correctness'] == True:
                doc = {
                    'id': question_id,
                    'completions': {
                        'T': item1['substitution'],
                        'F': item2['substitution'],
                    },
                }
                
            if item2['correctness'] == True:
                doc = {
                    'id': question_id,
                    'completions': {
                        'F': item1['substitution'],
                        'T': item2['substitution'],
                    },
                }

            docs.append(doc)
 
        return docs
    
    def doc_to_text(self, doc, include_target=True):
        # WSC273 is currently only writing out full examples. Partial evaluation needs implementing.
        text = doc['completions']['T'] + ' True. ' + doc['completions']['F'] + ' False.'
        return text

82

Leo Gao's avatar
Leo Gao committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')