quac.py 3.95 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
3
4
"""
QuAC: Question Answering in Context
https://arxiv.org/abs/1808.07036 

5
6
7
8
9
10
11
Question Answering in Context (QuAC) is a dataset for modeling, understanding, and 
participating in information seeking dialog. Data instances consist of an interactive
dialog between two crowd workers: (1) a student who poses a sequence of freeform
questions to learn as much as possible about a hidden Wikipedia text, and (2)
a teacher who answers the questions by providing short excerpts (spans) from the text.

Homepage: https://quac.ai/
Leo Gao's avatar
Leo Gao committed
12
"""
Jonathan Tow's avatar
Jonathan Tow committed
13
14
import inspect
import lm_eval.datasets.quac.quac
15
from lm_eval.base import Task
Charles Foster's avatar
Charles Foster committed
16
17


18
_CITATION = """
Leo Gao's avatar
Leo Gao committed
19
@article{choi2018quac,
20
21
22
23
    title={Quac: Question answering in context},
    author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},
    journal={arXiv preprint arXiv:1808.07036},
    year={2018}
Leo Gao's avatar
Leo Gao committed
24
25
26
}
"""

Charles Foster's avatar
Charles Foster committed
27

Leo Gao's avatar
Leo Gao committed
28
29
class QuAC(Task):
    VERSION = 0
Jonathan Tow's avatar
Jonathan Tow committed
30
31
    DATASET_PATH = inspect.getfile(lm_eval.datasets.quac.quac)
    DATASET_NAME = None
Charles Foster's avatar
Charles Foster committed
32
33
34
35
36
37
38
39
40
41
42

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def training_docs(self):
Jon Tow's avatar
Jon Tow committed
43
        if self._training_docs is None:
Jon Tow's avatar
Jon Tow committed
44
            self._training_docs = list(map(self._process_doc, self.dataset["train"]))
Jon Tow's avatar
Jon Tow committed
45
        return self._training_docs
Charles Foster's avatar
Charles Foster committed
46
47

    def validation_docs(self):
Jon Tow's avatar
Jon Tow committed
48
        return map(self._process_doc, self.dataset["validation"])
Charles Foster's avatar
Charles Foster committed
49
50
51

    def test_docs(self):
        raise NotImplementedError("QuAC has no test docs.")
Jonathan Tow's avatar
Jonathan Tow committed
52

Jon Tow's avatar
Jon Tow committed
53
    def _process_doc(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
54
55
56
        doc["title"] = doc['title'] + ' - ' + doc['section_title']
        return doc

57
58
59
    def doc_to_text(self, doc):
        return 'TITLE: ' + doc['title'] + '\n' + 'PARAGRAPH: ' + doc['paragraph'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

60
61
62
63
64
65
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
        return doc['paragraph']

66
67
    def doc_to_target(self, doc):
        return doc['answer']
Charles Foster's avatar
Charles Foster committed
68

Leo Gao's avatar
Leo Gao committed
69
70
71
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
72

Leo Gao's avatar
Leo Gao committed
73
74
75
76
77
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
Jonathan Tow's avatar
Jonathan Tow committed
78
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
Leo Gao's avatar
Leo Gao committed
112
        raise NotImplementedError('Evaluation not implemented')