cbt.py 3.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import numpy as np
from lm_eval.base import rf
from lm_eval.metrics import mean
from .common import HFTask


class CBTBase(HFTask):
    """The Children’s Book Test (CBT) from the paper:
    https://research.fb.com/wp-content/uploads/2016/11/the_goldilocks_principle_reading_children_s_books_with_explicit_memory_representations.pdf
    NOTE: This evaluation is based on the (context + query) question-answering variant
    used by the Recurrent Language Models described in the aforementioned paper.
    See section 4.4.
    """

    DATASET_PATH = "cbt"
    DATASET_NAME = None

Leo Gao's avatar
Leo Gao committed
18
19
    VERSION = 0

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    def detokenize(self, text):
        text = text.replace(" '", "'")
        text = text.replace(" \n", "\n")
        text = text.replace("\n ", "\n")
        text = text.replace(" n't", "n't")
        text = text.replace("`` ", '"')
        text = text.replace("''", '"')
        # punctuation
        text = text.replace(" :", ":")
        text = text.replace(" ;", ";")
        text = text.replace(" !", "!")
        text = text.replace(" ?", "?")
        text = text.replace(" ,", ",")
        text = text.replace(" .", ".")
        return text

    def doc_to_text(self, doc):
        passage = " ".join(doc["sentences"])
        text = "Passage: " + passage + "\nQuestion: " + doc["question"]
        return self.detokenize(text)

41
42
43
44
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
researcher2's avatar
researcher2 committed
45
        passage = " ".join(doc["sentences"])
46
47
        return passage

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def doc_to_target(self, doc):
        return ""

    def fewshot_examples(self, k, rnd):
        assert k == 0, f"CBT is only implemented for the zero-shot setting. Given k={k}."
        return super().fewshot_examples(k, rnd)

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        lls = []
        for option in doc["options"]:
            # Following Section 4.4 "Recurrent Language Models" in the CBT paper:
            # "we rank candidate [option] c based on p(q1 . . . qk−1, c, qk+1 . . . ql)
            # rather than simply p(q1 . . . qk−1, c)."
            lls.append(rf.loglikelihood("", ctx.replace("XXXXX", option))[0])
        return lls

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        gold = doc["options"].index(doc["answer"])
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "acc": mean
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "acc": True
        }


class CBTCN(CBTBase):
    DATASET_NAME = "CN"


class CBTNE(CBTBase):
    DATASET_NAME = "NE"