"tests/pipelines/dit/test_dit.py" did not exist on "7e29b747f935c08f5b85c6eccaad4490023788c9"
test_utils.py 13.7 KB
Newer Older
1
2
3
import itertools

import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
4
import pytest
Baber Abbasi's avatar
Baber Abbasi committed
5
import torch
Baber Abbasi's avatar
Baber Abbasi committed
6

7
8
9
10
11
12
from lm_eval.api.metrics import (
    aggregate_subtask_metrics,
    mean,
    pooled_sample_stderr,
    stderr_for_metric,
)
13
from lm_eval.models.utils import Collator
Baber Abbasi's avatar
Baber Abbasi committed
14
15
16
17
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)
Jason Phang's avatar
Jason Phang committed
18
19
20
21
22
23


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v1():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
Fabrizio Milo's avatar
Fabrizio Milo committed
24
25
26
27
28
29
30
31
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
Jason Phang's avatar
Jason Phang committed
32
33
34
35
36
37
38
39
40
41
42
43
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
44
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v2():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=8,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
73
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v3():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]),
        ([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]),
        ([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
118
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v4():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
159
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
160
161
162
163
164
165
166
167
168
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v5():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
Fabrizio Milo's avatar
Fabrizio Milo committed
169
170
171
172
173
174
175
176
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
Jason Phang's avatar
Jason Phang committed
177
178
179
180
181
182
183
184
185
186
187
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
188
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v6():
    gold = [
        ([-100, 0], [0, 1]),
        ([1, 2], [2, 3]),
        ([3, 4], [4, 5]),
        ([5, 6], [6, 7]),
        ([6, 7], [8]),
    ]
    x = list(range(9))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
213
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


def test_get_rolling_token_windows_empty():
    generator = get_rolling_token_windows(
        token_list=[],
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    n = 0
    for _ in generator:
        n += 1
    assert n == 0
Leo Gao's avatar
Leo Gao committed
230
231
232


def test_make_disjoint_window():
Fabrizio Milo's avatar
Fabrizio Milo committed
233
234
235
236
237
    assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == (
        [1],
        [2, 3, 4, 5, 6],
    )
    assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6])
238
    assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6])
Baber Abbasi's avatar
Baber Abbasi committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261


class TestCollator:
    def make_generate_sample(self, end=10):
        strings = ["x" * i for i in range(1, end + 1)]
        gen_kwargs1, gen_kwargs2 = (
            {"temperature": 0},
            {"temperature": 0, "until": ["nn", "\n\n"]},
        )
        args = [
            (string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2)
            for i, string in enumerate(strings)
        ]

        return args

    def make_loglikelihood_sample(self, end=11):
        samples = [
            (("x", "x"), list(range(1, total_length + 1)))
            for total_length in range(1, end + 1)
        ]
        return samples

Baber Abbasi's avatar
Baber Abbasi committed
262
263
264
265
266
267
268
269
    def make_loglikelihood_sample_group(self, end=11):
        a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)]
        b = [
            (("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z])
            for x, y, z in zip(range(9), range(9, 18), range(18, 27))
        ]
        return a + b

Baber Abbasi's avatar
Baber Abbasi committed
270
271
272
273
274
    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)])
    def test_generations(self, batch_size, end):
        _collate_gen = lambda x: (-len(x[0]), x[0])  # noqa: E731

        generation_samples = self.make_generate_sample(int(end))
Baber Abbasi's avatar
Baber Abbasi committed
275
        gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs")
276
        chunks_gen = gens.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
277
        output = []
278
279
280
281
        group_one = end // 2
        group_two = end - end // 2
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
282
283
284
            # check batching
            assert (
                len(chunks) <= batch_size
285
                if is_batch
Baber Abbasi's avatar
Baber Abbasi committed
286
287
288
                else len(chunks) in [group_one, group_two]
            )
            # check if reorder-er is working correctly
289
290
            chunk_lengths = [len(chunk[0]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
291
            # check if grouping correctly
292
293
            chunk_to_compare = chunks[0][1]
            assert all(x[1] == chunk_to_compare for x in chunks)
Baber Abbasi's avatar
Baber Abbasi committed
294
            for x in chunks:
295
                output.extend([x])
Baber Abbasi's avatar
Baber Abbasi committed
296
297
298
299
300
301
302
303
        reordered_output = gens.get_original(output)
        # check get original
        assert reordered_output == generation_samples

    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)])
    def test_loglikelihood(self, batch_size, end):
        _collate_log = lambda x: (-len(x[1]), tuple(x[1]))  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample(int(end))
Baber Abbasi's avatar
Baber Abbasi committed
304
305
306
307
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
        )
308
        chunks_gen = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
309
        output = []
310
311
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
312
            # check batching
313
            assert len(chunks) <= batch_size if is_batch else len(chunks) == end
Baber Abbasi's avatar
Baber Abbasi committed
314
            # check reorder
315
316
            chunk_lengths = [len(chunk[1]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
317
            for x in chunks:
318
                output.extend([x[1]])
Baber Abbasi's avatar
Baber Abbasi committed
319
320
321
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]
322

Baber Abbasi's avatar
Baber Abbasi committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    @pytest.mark.parametrize("batch_size", [17, 8, 12, 0])
    def test_context_grouping(self, batch_size):
        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        _collate_log = _collate  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample_group()
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
            group_fn=lambda a: a[-2] + a[-1][:-1],
            group_by="contexts",
        )
337
        chunks_gen = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
338
339
        output = []
        outputs_ = []
340
341
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
342
            # check batching
343
            if is_batch:
Baber Abbasi's avatar
Baber Abbasi committed
344
345
                assert len(chunks) <= batch_size
            # check reorder
346
347
            chunk_lengths = [len(chunk[1]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
348
349
350
351
352
353
354
355
356
            for x in chunks:
                for request_str, cont_toks, logits in loglikelihoods.get_cache(
                    req_str="".join(x[0]),
                    cxt_toks=x[1],
                    cont_toks=x[2],
                    logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
                    .unsqueeze(0)
                    .unsqueeze(0),
                ):
357
358
                    output.extend([x[1]])
                    outputs_.extend([cont_toks])
Baber Abbasi's avatar
Baber Abbasi committed
359
360
361
362
363
        assert len(output) == len(outputs_)
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

def test_aggregate_mean():
    # test weight_by_size is respected
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False)
        == 0.3
    )
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True)
        == 0.3375
    )


@pytest.mark.parametrize(
    "samples",
    [
        [40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]],
        [35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]],
    ],
)
def test_aggregate_stderrs(samples):
    # check that aggregating subtasks' bootstrap stderrs with our formula
    # (using weight_by_size) is ~equiv.
    # to just getting bootstrap stderr of the whole set of samples
    mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000)

    stderrs = [mean_stderr(subtask) for subtask in samples]

    sizes = [len(subtask) for subtask in samples]

    assert np.allclose(
        pooled_sample_stderr(stderrs, sizes),
        mean_stderr(list(itertools.chain.from_iterable(samples))),
        atol=1.0e-3,
    )