metrics.py 15.5 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
from collections.abc import Iterable
5
from typing import List
6

Baber Abbasi's avatar
Baber Abbasi committed
7
import evaluate as hf_evaluate
8
9
10
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
11

12
from lm_eval.api.registry import register_aggregation, register_metric
13

lintangsutawika's avatar
lintangsutawika committed
14

15
eval_logger = logging.getLogger("lm-eval")
16

17

18
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
19
20
21
22
23
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


24
25
@register_aggregation("mean")
def mean(arr):
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    if isinstance(arr[0], (list, np.ndarray)):
        return sum(arr[0]) / len(arr[0])
    else:
        return sum(arr) / len(arr)


@register_aggregation("acc_gpt")
def acc_gpt(arr):
    unzipped_list = list(zip(*arr))
    golds = unzipped_list[0]
    preds = unzipped_list[1]

    accuracy = sklearn.metrics.accuracy_score(golds, preds)
    return accuracy
40
41
42
43
44
45
46


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


47
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
48
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
64
65
66
67
68
69
70
71
72
73
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


74
75
76
77
78
79
80
81
82
83
84
85
86
@register_aggregation("squad_f1")
def squad_f1_score(items):
    gold_squad, pred_squad = [], []
    for index, (ref, pred) in enumerate(items):
        pred_dict = {'prediction_text': str(pred), 'id': str(index)}
        ref_dict = {'answers': {'answer_start': [0], 'text': [str(ref)]}, 'id': str(index)}
        gold_squad.append(ref_dict)
        pred_squad.append(pred_dict)
    squad_metric = hf_evaluate.load("squad")
    results_squad = squad_metric.compute(predictions=pred_squad, references=gold_squad)
    return results_squad['f1']/100


haileyschoelkopf's avatar
haileyschoelkopf committed
87
88
89
90
91
92
93
94
95
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
145
146
147
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
Lintang Sutawika's avatar
Lintang Sutawika committed
148
149
    bs, num_class = np.array(predictions).shape

Lintang Sutawika's avatar
Lintang Sutawika committed
150
    gold = list(gold)
Lintang Sutawika's avatar
Lintang Sutawika committed
151
    gold_one_hot = np.eye(num_class)[gold]
Lintang Sutawika's avatar
Lintang Sutawika committed
152
153
154
155
156
157
158
159
160
161
162
163
164
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


165
166
167
@register_metric(
    metric="acc",
    higher_is_better=True,
168
    output_type=["loglikelihood", "multiple_choice", "multiple_choice_gpt"],
169
170
171
172
173
174
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


175
176
177
178
179
180
181
182
183
184
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


185
186
187
188
189
190
191
192
193
194
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


Baber Abbasi's avatar
Baber Abbasi committed
195
exact_match = hf_evaluate.load("exact_match")
196
197


198
199
200
201
202
203
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
204
205
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
206
207


208
209
210
211
212
213
214
215
216
@register_metric(
    metric="squad",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="squad_f1"
)
def squad_fn(items):
    return items

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
256

Leo Gao's avatar
Leo Gao committed
257
def pop_stddev(arr):
258
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
259
260
261
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
262
def sample_stddev(arr):
263
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
264
265
266
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
267
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
268
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
269
270


Baber Abbasi's avatar
Baber Abbasi committed
271
272
273
274
275
276
277
278
279
280
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
281
282
283
284
285
286
287
288
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
289
290
291


@register_metric(
292
    metric="f1",
293
    higher_is_better=True,
294
    output_type=["multiple_choice", "multiple_choice_gpt"],
haileyschoelkopf's avatar
haileyschoelkopf committed
295
    aggregation="f1",
296
)
297
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
298
    return items
299
300


301
302
303
@register_metric(
    metric="bleu",
    higher_is_better=True,
304
    output_type="generate_until",
305
306
307
308
309
310
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


311
312
313
@register_metric(
    metric="chrf",
    higher_is_better=True,
314
    output_type="generate_until",
315
316
317
318
319
320
321
322
323
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
324
    output_type="generate_until",
325
326
327
328
329
330
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
373
374
375
376
377
378
379
380
381
382

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
423
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
424
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
425
426
        self.f = f
        self.n = n
427

Leo Gao's avatar
Leo Gao committed
428
429
430
431
432
433
434
435
436
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
437

438
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
439
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
440

Leo Gao's avatar
Leo Gao committed
441
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
442
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
443
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
444
445
446
447
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
448
    res = []
449
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
450
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
451

Leo Gao's avatar
Leo Gao committed
452
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
453
454
    for bootstrap in tqdm(
        pool.imap(
455
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
456
457
458
459
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
460
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
461
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
462

Leo Gao's avatar
Leo Gao committed
463
    pool.close()
Leo Gao's avatar
Leo Gao committed
464
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
465
466


467
468
469
470
471
def stderr_for_metric(metric, bootstrap_iters: int):
    if bootstrap_iters <= 0:
        # return no function (don't compute stderr) if bootstrap iters = 0
        return None

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
488
489
490
491
492
493
494
495
496
497


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
498
499
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
500
501
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
502
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
503
504
    ) / (sum(sizes) - len(sizes))

505
    return np.sqrt(pooled_sample_var / sum(sizes))
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
544
    if not weight_by_size:
545
546
547
548
549
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)