huggingface.py 58.9 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
Nathan Habib's avatar
Nathan Habib committed
6
import jinja2
7

8
import torch
9
import torch.nn.functional as F
10
import transformers
Jeevan's avatar
Jeevan committed
11
12
13
14
15
16
from accelerate import (
    Accelerator,
    DistributedType,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
17
from accelerate.utils import get_max_memory
18
from huggingface_hub import HfApi
19
20
21
22
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
23
24
25
26
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
27
28

from lm_eval import utils
baberabb's avatar
baberabb committed
29
from lm_eval.api.instance import Instance
30
from lm_eval.api.model import TemplateLM
31
from lm_eval.api.registry import register_model
32
33
34
35
36
37
38
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
39

40

41
eval_logger = utils.eval_logger
42

lintangsutawika's avatar
lintangsutawika committed
43

44
@register_model("hf-auto", "hf", "huggingface")
45
class HFLM(TemplateLM):
46
47
48
49
50
51
52
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

53
    AUTO_MODEL_CLASS = None
54
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
55

56
57
    def __init__(
        self,
58
        pretrained: Union[str, transformers.PreTrainedModel],
Baber Abbasi's avatar
Baber Abbasi committed
59
60
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
61
62
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
63
64
65
66
67
68
69
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
70
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
71
        logits_cache: bool = True,
72
73
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
74
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
75
76
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
77
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
78
        use_fast_tokenizer: Optional[bool] = True,
79
        add_bos_token: Optional[bool] = False,
80
        prefix_token_id: Optional[int] = None,
81
        # arguments used for splitting a model across GPUs naively.
82
83
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
84
85
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
86
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
87
        # PEFT, delta weights and quantization options
88
        peft: Optional[str] = None,
89
        delta: Optional[str] = None,
90
91
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
92
    ) -> None:
93
94
        super().__init__()

95
96
97
98
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
99
            )
100
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
101
102
103
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
104
            gpus = 0
105

106
        else:
107
108
109
110
111
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
112
113
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
Nathan Habib's avatar
Nathan Habib committed
114
            self.accelerator = accelerator
115

116
117
118
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

119
120
121
122
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
123
                    + [f"cuda:{i}" for i in range(gpus)]
124
                    + ["mps", "mps:0"]
125
                    + [f"npu:{i}" for i in range(gpus)]
126
                )
127
                if device and device in device_list:
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
144
            else: # Parallelism managed by accelerate
145
146
147
148
149
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
150
                self._device = self.accelerator.device if self.accelerator is not None else torch.device(device)
151

152
153
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
154

155
            self._get_config(
156
157
                pretrained,
                revision=revision,
Nathan Habib's avatar
Nathan Habib committed
158
                trust_remote_code=trust_remote_code, 
159
160
            )

161
162
163
164
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
165

166
167
168
169
170
171
172
173
174
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

175
176
177
178
179
180
181
182
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
183
                gpus=gpus,
184
185
186
187
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
188
                delta=delta,
189
190
                autogptq=autogptq,
                **kwargs,
191
192
            )

193
        # access self._model through self.model property outside this method
194
195
196
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
197

lintangsutawika's avatar
lintangsutawika committed
198
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
199
        self.logits_cache = logits_cache
200
        self.vocab_size = self.tokenizer.vocab_size
201
202
203
204
205
206
207
208
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
209
            if getattr(self.config, "model_type", None) == "qwen":
210
211
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
212
213
214
215
216
217
218
219
220
221
            elif (
                self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
                or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
            ):
                # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
                # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
                # ---
                # Note that the world tokenizer class name, might change in the future for the final huggingface merge
                # https://github.com/huggingface/transformers/pull/26963
                assert self.tokenizer.pad_token_id == 0
222
223
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
224

225
226
        # TODO: override this for Gemma
        self.add_bos_token = add_bos_token
227
228
        if getattr(self.config, "model_type", None) == "gemma":
            self.add_bos_token = True
229
            eval_logger.info(
230
                f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
231
232
            )

233
        self._max_length = max_length
234
235
236
237
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
238
239
240
241
242
243
244
245
246
247
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
248

249
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
250
251
252
253
254
255
256
257
258
259
260
261
            if (gpus >= 1 or str(self.device) == "mps"):
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
262
263
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
264
265
266
267
                if parallelize and accelerator.num_processes > 1:
                    eval_logger.warning(
                        "You are both using a HF Accelerate `device_map` and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
                    )
268
269
270
271
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
272
                else:
273
274
275
276
277
278
279
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
280
281
282
283
284
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
285
                            DistributedType.MULTI_NPU,
286
287
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
288
289
290
291
292
293
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
294
                    self._device = torch.device(f"{accelerator.device}")
295
                    self.accelerator = accelerator
296

297
298
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
299

300
301
302
303
304
305
306
307
308
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
309

310
        self.custom_prefix_token_id = prefix_token_id
311
312
313
314
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
315

Nathan Habib's avatar
Nathan Habib committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def _get_accelerate_args(
        self,
        parallelize: bool = None,
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if num_machines == 0:
            eval_logger.info("We are not in a distributed setting. Setting model_parallel to False.")
            parallelize = False

        if parallelize is None: 
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            model_parallel = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {model_parallel} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize: # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None: # Using the provided memory requirements
                max_memory_per_gpu_map = {device_idx: max_memory_per_gpu for device_idx in range(gpus)}
            else: # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory() 
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                max_memory_per_gpu_map = {
                    k: v
                    for k, v in max_memory_all_gpus.items()
                    if k % num_local_processes == (self.accelerator.process_index % num_local_processes)
                }
            args["max_memory"] = max_memory_per_gpu_map
            args["device_map"] = "auto"
            eval_logger.info(
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to 'auto'"
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif device_map is None: # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

387
388
389
390
391
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

392
393
394
395
396
397
398
399
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

400
401
402
403
404
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

405
406
407
408
409
410
411
412
413
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

414
415
    @property
    def max_length(self):
416
417
418
419
420
421
422
423
424
425
426
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
427

428
    @property
Ethan Smith's avatar
Ethan Smith committed
429
    def max_gen_toks(self) -> int:
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
448
449
450
451
452
453
454
455
456
457
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

    @property
    def chat_template(self) -> str:
        if self.tokenizer.chat_template is not None:
            return self.tokenizer.chat_template
        return self.tokenizer.default_chat_template

458
459
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
460
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
Nathan Habib's avatar
Nathan Habib committed
516
517
518
519
520
521
522
        with self.accelerator.main_process_first():
            self._config = transformers.AutoConfig.from_pretrained(
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
                force_download=False,
            )
523
524
525
526
527
528
529
530
531
532
533

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
534
        gpus: Optional[int] = None,
535
536
537
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
538
        # PEFT, delta weights and quantization options
539
        peft: Optional[str] = None,
540
        delta: Optional[str] = None,
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
558
559
560
561
562
563
564
565
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
566
            )
Nathan Habib's avatar
Nathan Habib committed
567
        )
568

569
570
571
572
573
574
575
576
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
577
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
578
579
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
580
581
582
583
584
585
586
587
588
589
590

            with self.accelerator.main_process_first():
                #model_kwargs["device_map"] = "balanced_low_0"
                self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                    pretrained,
                    revision=revision,
                    torch_dtype=get_dtype(dtype),
                    trust_remote_code=trust_remote_code,
                    force_download=False,
                    **model_kwargs,
                )
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

610
611
612
613
614
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

615
616
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
617
618
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
619
620
621
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
                self._model.resize_token_embeddings(len(self.tokenizer))
622
623
624
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
625
626
627
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
Nathan Habib's avatar
Nathan Habib committed
682
                    force_download=False
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Nathan Habib's avatar
Nathan Habib committed
704
705
    def _detect_batch_size(self, requests=None, pos: int = 0) -> int:
        if len(requests[0]) == 3: # logprob evals
Benjamin Fattori's avatar
Benjamin Fattori committed
706
707
708
709
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
710
711
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Nathan Habib's avatar
Nathan Habib committed
712
713
714
715
716
717
718
719
720
721
            security_margin_factor = 6 # batch sizes for log prob evals sometimes generate OOMs
        elif len(requests[0]) == 2: # generative evals
            # using rolling window with maximum context
            longest_context = max([len(self.tok_encode(request[0])) + request[1].get("max_gen_toks", self.max_length) for request in requests[pos:]])
            if longest_context > self.max_length:
                eval_logger.warning(
                    f"Longest context length of {longest_context} exceeds max_length of {self.max_length}. Truncating to max_length."
                )
                longest_context = self.max_length
            max_length = longest_context
722
723
            max_context_enc = max_length
            max_cont_enc = max_length
Nathan Habib's avatar
Nathan Habib committed
724
725
            security_margin_factor = 6

lintangsutawika's avatar
lintangsutawika committed
726

Benjamin Fattori's avatar
Benjamin Fattori committed
727
728
729
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
Nathan Habib's avatar
Nathan Habib committed
730
            security_margin = int(0.05 * security_margin_factor * batch_size)
731
732
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
733
                batched_conts = torch.ones(
Nathan Habib's avatar
Nathan Habib committed
734
                    (batch_size + security_margin, length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
735
                ).long()
Nathan Habib's avatar
Nathan Habib committed
736
                test_batch = torch.ones((batch_size + security_margin, length), device=self.device).long()
737
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
738
739
740
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
741
742
            else:
                call_kwargs = {}
Nathan Habib's avatar
Nathan Habib committed
743
744
                test_batch = torch.rand(
                    (batch_size + security_margin, max_length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
745
                ).long()
Nathan Habib's avatar
Nathan Habib committed
746
747
748
749

            for _ in range(5*security_margin_factor):
                logits = self._model_call(inps=test_batch, **call_kwargs).float()
                scores = F.log_softmax(logits, dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
750

Benjamin Fattori's avatar
Benjamin Fattori committed
751
752
            return batch_size

753
        try:
Nathan Habib's avatar
Nathan Habib committed
754
            print(f"finding batch size on process {self.accelerator.local_process_index}")
755
756
757
758
759
760
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
761

762
763
764
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
Nathan Habib's avatar
Nathan Habib committed
765
            print(f"gathering on process {self.accelerator.local_process_index}")
766
767
768
769
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
770
            clear_torch_cache()
771
772
            return batch_size

773
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
774
775
        return batch_size

baberabb's avatar
baberabb committed
776
777
778
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
779
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
780
781
782
783
784
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
785
786
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
787
788
789
790
791
792
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
793

Lintang Sutawika's avatar
Lintang Sutawika committed
794
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
795

796
797
798
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
799

800
801
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
802
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
803
804
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
805
        padding_side: str = "left",
806
807
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
808
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
809
810
811
812
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
813
        add_special_tokens = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
814
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
815
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
816
817
818

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
819
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
820
821
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
822
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
823
824
825
826
827
828
829
830
831
832
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
833
834
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
835
836
837

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
838
        :param inps: torch.Tensor
839
840
841
842
843
844
845
846
847
848
849
850
851
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
852
853
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
854
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
855
856
857
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
858
859
860
861
862
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
863
        # temperature = 0.0 if not set
864
865
866
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
867
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
868
        do_sample = generation_kwargs.get("do_sample", None)
869
870
871
872
873

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
874
875
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
876
877
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
878
            self.tokenizer, stop, context.shape[1], context.shape[0]
879
        )
880
        return self.model.generate(
881
            input_ids=context,
882
883
            max_length=max_length,
            stopping_criteria=stopping_criteria,
884
            pad_token_id=self.tokenizer.pad_token_id,
885
886
887
            use_cache=True,
            **generation_kwargs,
        )
888

Baber Abbasi's avatar
Baber Abbasi committed
889
890
891
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
892
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
893
894
895
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
896
897
898
899
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
900
901
902
903
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
904
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
905
906
            logits = logits[:contlen]

907
908
        return logits

909
910
911
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
912
        loglikelihoods = []
Benjamin Fattori's avatar
Benjamin Fattori committed
913
914
915
916
917
918
919
920
921

        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

922
923
924
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
925
926
927
928
929
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
930
                        prefix_token=self.prefix_token_id,
931
932
933
934
935
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
936
937

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
953
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
954
955
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
956
957
958
959
960
961
962
963
964
965
966
967
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
968

969
970
971
972
973
974
975
976
977
978
979
980
981
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
982
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
983
984
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
985

Nathan Habib's avatar
Nathan Habib committed
986
987
988
989
    def _reset_batch_scheduler(self):
        """When we change group in generative evaluations, we reset the batch size"""
        self.batch_sizes = {}

Ethan Smith's avatar
Ethan Smith committed
990
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
991
992
993
994
995
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
996
997
998
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
999
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1000
            """Defines the key for the sorted method"""
1001
1002
1003
1004
1005
1006
1007
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1008
            toks = req[1] + req[2]
1009
1010
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1011
1012
1013
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1014
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
            and self.logits_cache
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1028
1029
1030

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1031
1032
1033
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1034
1035
1036
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1037
1038
1039
1040
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1041
1042
1043
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1044
            else None
1045
1046
        )

Nathan Habib's avatar
Nathan Habib committed
1047
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn, accelerator=self.accelerator)
1048
1049
1050
1051
1052
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1053
        for chunk in chunks:
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

Nathan Habib's avatar
Nathan Habib committed
1067
1068
            from pprint import pprint

1069
1070
1071
1072
1073
1074
            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1075
                # how this all works (illustrated on a causal decoder-only setup):
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1087
1088
                        device=self.device,
                    )
1089
1090
1091
1092
1093
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1094
                        device=self.device,
1095
                    )
1096
                    (inplen,) = inp.shape
1097
1098
1099
1100

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1101
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1102
                        (continuation_enc)[-self.max_length :],
1103
1104
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1105
                        dtype=torch.long,
1106
1107
                        device=self.device,
                    )
1108
1109
                    (contlen,) = cont.shape

1110
1111
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1112
1113
1114
1115
1116
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1117

haileyschoelkopf's avatar
haileyschoelkopf committed
1118
1119
1120
1121
1122
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1123
1124
1125
1126

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1127

1128
1129
1130
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
1131
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1132
1133
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1134
1135
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
1136
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
1138
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1139
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1140
1141
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1142
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
1144
1145
1146
1147
1148
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1149
1150

            multi_logits = F.log_softmax(
Nathan Habib's avatar
Nathan Habib committed
1151
                self._model_call(batched_inps, **call_kwargs), dim=-1, dtype=torch.float16
1152
            )  # [batch, padding_length (inp or cont), vocab]
1153

Baber Abbasi's avatar
Baber Abbasi committed
1154
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1155
1156
1157
1158
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1159
                # take only logits in the continuation
1160
                # (discard context toks if decoder-only ; discard right-padding)
1161
1162
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1163
                ctx_len = (
1164
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1165
1166
1167
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1168
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1169
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1170
1171
1172
1173

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

                    self.cache_hook.add_partial("loglikelihood", request_str, answer)
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1203
1204

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1205

1206
1207
        return re_ord.get_original(res)

1208
1209
1210
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1211
        res = []
1212

Nathan Habib's avatar
Nathan Habib committed
1213
1214
        self.accelerator.wait_for_everyone()

Baber Abbasi's avatar
Baber Abbasi committed
1215
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1216
            """Defines the key for the sorted method"""
1217
1218
1219
1220
1221
1222
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1223
1224
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1225

1226
1227
        pbar = tqdm(
            total=len(requests),
1228
            disable=(disable_tqdm or (self.rank != 0)),
1229
1230
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1231
1232
1233
1234
1235
1236
1237
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else 0
        )
        batch_fn = (
            self._batch_scheduler
Nathan Habib's avatar
Nathan Habib committed
1238
            if self.batch_size == "auto" #  and not adaptive_batch_size
Baber Abbasi's avatar
Baber Abbasi committed
1239
1240
            else None
        )
1241

Baber Abbasi's avatar
Baber Abbasi committed
1242
1243
1244
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1245
1246
1247
1248
1249
1250
1251
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Nathan Habib's avatar
Nathan Habib committed
1252
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn, reset_batch_fn=self._reset_batch_scheduler)
Baber Abbasi's avatar
Baber Abbasi committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1265
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1266
1267
1268
1269
1270
1271
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1272
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1273
                )
1274
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1275
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1276
            if not until:
1277
1278
1279
                until = [eos]
            else:
                until.append(eos)
Baber Abbasi's avatar
Baber Abbasi committed
1280
1281
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
Nathan Habib's avatar
Nathan Habib committed
1282
1283
                if max_gen_toks > self.max_length:
                    max_gen_toks = self.max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1284
1285
1286
1287
1288
1289
1290
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Nathan Habib's avatar
Nathan Habib committed
1291
1292
1293
                while max_ctx_len <= 0:
                    max_gen_toks = max_gen_toks // 2
                    max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1306

Baber Abbasi's avatar
Baber Abbasi committed
1307
1308
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1309

Baber Abbasi's avatar
Baber Abbasi committed
1310
1311
1312
1313
1314
1315
1316
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1317

Baber Abbasi's avatar
Baber Abbasi committed
1318
1319
1320
1321
1322
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1323

Baber Abbasi's avatar
Baber Abbasi committed
1324
                s = self.tok_decode(cont_toks)
1325

Baber Abbasi's avatar
Baber Abbasi committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1339

1340
        pbar.close()
1341

Baber Abbasi's avatar
Baber Abbasi committed
1342
        return res
1343

KonradSzafer's avatar
KonradSzafer committed
1344
1345
1346
1347
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
Nathan Habib's avatar
Nathan Habib committed
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
            

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info