gptj.py 3.97 KB
Newer Older
Tian Yun's avatar
Tian Yun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import transformers
import torch
from lm_eval.base import BaseLM


class GPTJLM(BaseLM):
    def __init__(
        self,
        device="cuda",
        batch_size=1,
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(batch_size, int)

        if device:
            self._device = torch.device(device)
        else:
            self._device = (
                torch.device("cuda")
                if torch.cuda.is_available()
                else torch.device("cpu")
            )

        pretrained = "EleutherAI/gpt-j-6B"
        self.gptj = transformers.AutoModelForCausalLM.from_pretrained(pretrained).to(self.device)
        self.gptj.eval()

        # pretrained tokenizer for neo is broken for now so just hard-coding this to gptj
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained)
        self.vocab_size = self.tokenizer.vocab_size

        # multithreading and batching
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size

        # TODO: fix multi-gpu
        # gpus = torch.cuda.device_count()
        # if gpus > 1:
        #     self.gptj = nn.DataParallel(self.gptj)

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        try:
            return self.gptj.config.n_ctx
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
            return self.gptj.config.max_position_embeddings

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        # TODO: fix multi-gpu
        return self.batch_size_per_gpu  # * gpus

    @property
    def device(self):
        # TODO: fix multi-gpu
        return self._device

    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model
        """
        with torch.no_grad():
            return self.gptj(inps)[0][:, :, :50257]

    def _get_stopping_criteria(self, stopping_criteria_ids):
        class MultitokenEOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_seq_id: torch.LongTensor, tokenizer):
                self.eos_seq = tokenizer.decode(eos_seq_id)
                self.eos_seq_id = eos_seq_id
                self.eos_seq_len = len(eos_seq_id) + 1
                self.tokenizer = tokenizer

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                last_token_id = input_ids[0, -self.eos_seq_len:]
                last_tokens = self.tokenizer.decode(last_token_id)
                is_stopped = self.eos_seq in last_tokens
                return is_stopped
        
        class EOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_token_id: torch.LongTensor):
                self.eos_token_id = eos_token_id

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids[0,-1] == self.eos_token_id
         
        return transformers.StoppingCriteriaList([
            MultitokenEOSCriteria(stopping_criteria_ids, self.tokenizer),
            EOSCriteria(self.tokenizer.eos_token)
        ])

    def _model_generate(self, context, max_length, stopping_criteria_ids):
        stopping_criteria = self._get_stopping_criteria(stopping_criteria_ids)
        return self.gptj.generate(
            context, 
            max_length=max_length, 
            stopping_criteria=stopping_criteria,
            do_sample=False,
        )