race.py 5.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""
RACE: Large-scale ReAding Comprehension Dataset From Examinations
https://arxiv.org/pdf/1704.04683.pdf

RACE is a large-scale reading comprehension dataset with more than 28,000 passages
and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. The dataset
can be served as the training and test sets for machine comprehension.

Homepage: https://www.cs.cmu.edu/~glai1/data/race/
11
12
13
14
"""
import collections
import datasets
import numpy as np
15
from lm_eval.base import rf, Task
Jonathan Tow's avatar
Jonathan Tow committed
16
from lm_eval.metrics import mean
17

18
19

_CITATION = """
20
21
22
23
24
25
26
@article{lai2017large,
    title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
    author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
    journal={arXiv preprint arXiv:1704.04683},  
    year={2017}
}
"""
Leo Gao's avatar
Leo Gao committed
27
28
29
30
31
32
33
34


class each:
    def __init__(self, f):
        self.f = f

    def __rrshift__(self, other):
        return list(map(self.f, other))
Leo Gao's avatar
Leo Gao committed
35
36


37
class RACE(Task):
Jonathan Tow's avatar
Jonathan Tow committed
38
    VERSION = 1
Leo Gao's avatar
Leo Gao committed
39
40
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
41
42

    cache = {}
43
    letter_to_num = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
Leo Gao's avatar
Leo Gao committed
44
45
46
47
48
49
50
51
52
53

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    def _collate_data(self, set):
        if set in self.cache:
            return self.cache[set]
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
        for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
            r[item['article']].append(item)
        
        res = list(r.values() >> each(lambda x: {
            'article': x[0]['article'],
            'problems': x >> each(lambda y: {
                'question': y['question'],
                'answer': y['answer'],
                'options': y['options'],
            })
        }))

        self.cache[set] = res
        return res
Leo Gao's avatar
Leo Gao committed
76
77

    def training_docs(self):
78
        return self._collate_data("train")
Leo Gao's avatar
Leo Gao committed
79
80

    def validation_docs(self):
81
        return self._collate_data("validation")
Leo Gao's avatar
Leo Gao committed
82
83

    def test_docs(self):
84
        return self._collate_data("test")
Leo Gao's avatar
Leo Gao committed
85

Jon Tow's avatar
Jon Tow committed
86
87
    @classmethod
    def get_answer_option(cls, problem):
88
89
        answer = cls.letter_to_num[problem['answer']]
        return problem['options'][answer]
Jon Tow's avatar
Jon Tow committed
90
91
92

    @classmethod
    def last_problem(cls, doc):
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        return doc['problems'][-1]

    def doc_to_text(self, doc):
        text = 'Article: ' + doc['article'] + '\n\n'
        for problem in doc['problems'][:-1]:
            if problem['question'][-6:] == '  _  .':
                text += problem['question'][-5:] + self.get_answer_option(problem) + '\n'
            else:
                question = 'Question: ' + problem['question'] + '\n'
                answer = 'Answer: ' + self.get_answer_option(problem) + '\n'
                text += question + answer
        text += self.last_problem(doc)['question']
        return text

    def doc_to_target(self, doc):
        return " " + self.get_answer_option(self.last_problem(doc))

    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        problem = self.last_problem(doc)
        ll_choices = [
            rf.loglikelihood(ctx, " " + problem['options'][i])[0]
            for i in range(4)
        ]
        return ll_choices
Jon Tow's avatar
Jon Tow committed
127

Leo Gao's avatar
Leo Gao committed
128
    def process_results(self, doc, results):
129
130
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
Leo Gao's avatar
Leo Gao committed
131
132
133
134
135
136
137
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
138
        gold = self.letter_to_num[self.last_problem(doc)['answer']]
Jon Tow's avatar
Jon Tow committed
139
        pred = np.argmax(results)
140
141
142
        return {
            "acc": int(pred == gold)
        }
Leo Gao's avatar
Leo Gao committed
143
144
145
146

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
147
            A dictionary where keys are the names of submetrics and values are 
Leo Gao's avatar
Leo Gao committed
148
149
            functions that aggregate a list of metrics
        """
150
151
152
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
153
154
155
156

    def higher_is_better(self):
        """
        :returns: {str: bool}
157
            A dictionary where keys are the names of submetrics and values are 
Leo Gao's avatar
Leo Gao committed
158
159
            whether a higher value of the submetric is better
        """
160
161
162
        return {
            "acc": True
        }