cost_estimate.py 2.57 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import random
2

Leo Gao's avatar
Leo Gao committed
3
import transformers
4
5

from lm_eval import evaluator, tasks
6
from lm_eval.base import LM
Leo Gao's avatar
Leo Gao committed
7
8
9
10
11


class DryrunLM(LM):
    def __init__(self):
        self.tokencost = 0
Fabrizio Milo's avatar
Fabrizio Milo committed
12
        self.tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2")
Leo Gao's avatar
Leo Gao committed
13
14
15
16
17
18
19
20
        self.tokenizer.pad_token = "<|endoftext|>"

    @classmethod
    def create_from_arg_string(cls, arg_string):
        return cls()

    def loglikelihood(self, requests):
        res = []
Fabrizio Milo's avatar
Fabrizio Milo committed
21

Leo Gao's avatar
Leo Gao committed
22
23
24
25
26
        for ctx, cont in requests:
            res.append((-random.random(), False))
            self.tokencost += len(self.tokenizer.tokenize(ctx + cont))

        return res
Fabrizio Milo's avatar
Fabrizio Milo committed
27

28
    def generate_until(self, requests):
Leo Gao's avatar
Leo Gao committed
29
        res = []
Fabrizio Milo's avatar
Fabrizio Milo committed
30

31
        for ctx, _ in requests:
Leo Gao's avatar
Leo Gao committed
32
33
34
35
36
37
            res.append("lol")

            # assume worst case - generates until 256
            self.tokencost += len(self.tokenizer.tokenize(ctx)) + 256

        return res
Fabrizio Milo's avatar
Fabrizio Milo committed
38

Leo Gao's avatar
Leo Gao committed
39
40
    def loglikelihood_rolling(self, requests):
        res = []
Fabrizio Milo's avatar
Fabrizio Milo committed
41
42

        for (s,) in requests:
Leo Gao's avatar
Leo Gao committed
43
44
45
46
            # assume worst case: extra full context
            self.tokencost += len(self.tokenizer.tokenize(s)) + 2048

        return res
Leo Gao's avatar
Leo Gao committed
47
48
49
50


def main():
    lm = DryrunLM()
Fabrizio Milo's avatar
Fabrizio Milo committed
51

Leo Gao's avatar
Leo Gao committed
52
    task_list = "arc_challenge,arc_easy,boolq,cola,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,record,rte,sciq,sst,triviaqa,webqs,wic,wikitext,winogrande,wnli,wsc"
Leo Gao's avatar
Leo Gao committed
53
    values = []
Leo Gao's avatar
Leo Gao committed
54
    for taskname in task_list.split(","):
Leo Gao's avatar
Leo Gao committed
55
        lm.tokencost = 0
56
57
58
59
60
61
        evaluator.evaluate(
            lm=lm,
            task_dict={taskname: tasks.get_task(taskname)()},
            num_fewshot=0,
            limit=None,
            bootstrap_iters=10,
Fabrizio Milo's avatar
Fabrizio Milo committed
62
            description_dict=None,
63
        )
Leo Gao's avatar
Leo Gao committed
64
65

        print(taskname, lm.tokencost)
Fabrizio Milo's avatar
Fabrizio Milo committed
66
67
68
69
70
71
72
73
74
75
        values.append(
            [
                taskname,
                lm.tokencost,
                lm.tokencost / 1000 * 0.0008,
                lm.tokencost / 1000 * 0.0012,
                lm.tokencost / 1000 * 0.006,
                lm.tokencost / 1000 * 0.06,
            ]
        )
Leo Gao's avatar
Leo Gao committed
76
77
78
    from pytablewriter import MarkdownTableWriter

    writer = MarkdownTableWriter()
Leo Gao's avatar
Leo Gao committed
79
    writer.headers = ["Task", "Tokens", "Ada", "Babbage", "Curie", "Davinci"]
Leo Gao's avatar
Leo Gao committed
80
81
82

    values.sort(key=lambda x: -x[1])
    totcost = sum([x[1] for x in values])
Fabrizio Milo's avatar
Fabrizio Milo committed
83
84
85
86
87
88
89
90
91
92
    values.append(
        [
            "**Total**",
            totcost,
            totcost / 1000 * 0.0008,
            totcost / 1000 * 0.0012,
            totcost / 1000 * 0.006,
            totcost / 1000 * 0.06,
        ]
    )
Leo Gao's avatar
Leo Gao committed
93
94
95
96

    writer.value_matrix = values

    print(writer.dumps())
Fabrizio Milo's avatar
Fabrizio Milo committed
97
98


Leo Gao's avatar
Leo Gao committed
99
100
if __name__ == "__main__":
    main()