"examples/pytorch/translation/run_translation.py" did not exist on "6f840990a79d32634c82db534c047a5c4b549df8"
gguf.py 4.52 KB
Newer Older
1
2
import logging
import time
3
4

import requests
5
from requests.exceptions import RequestException
6
7
from tqdm import tqdm

8
9
10
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
logger = logging.getLogger(__name__)


def get_result(logprobs, context_length):
    is_greedy = True
    offsets = logprobs["text_offset"]
    tokens = logprobs["tokens"]
    tokens_logprobs = logprobs["token_logprobs"]

    idx = 0
    while offsets[idx] < context_length:
        idx += 1
    continuation_logprobs = sum(tokens_logprobs[idx:-1])
    for i in range(idx, len(tokens)):
        token = tokens[i]
        top_tokens = logprobs["top_logprobs"][i]
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


@register_model("gguf", "ggml")
class GGUFLM(LM):
    def __init__(self, base_url=None, max_length=2048, **kwargs):
        super().__init__()
        self.base_url = base_url
        assert self.base_url, "must pass `base_url` to use GGUF LM!"
        self.logprobs = 10
        self.temperature = 0.0
        self.max_length = max_length

    def gguf_completion(
        self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs
    ):
        for _ in range(retries):
            try:
                prompt = context
                request = {
                    "prompt": prompt,
                    "logprobs": self.logprobs,
                    "temperature": self.temperature,
                }
                if continuation:
                    prompt += continuation
                    request.update({"prompt": prompt, "max_tokens": 1, "echo": True})
                if stop is not None:
                    request["stop"] = stop
                response = requests.post(
                    f"{self.base_url}/v1/completions", json=request
                )
                response.raise_for_status()
                return response.json()
            except RequestException as e:
                logger.error(f"RequestException: {e}")
                time.sleep(delay)  # wait before retrying
        else:
            raise Exception(f"Failed to get a valid response after {retries} retries.")

    def loglikelihood(self, requests):
        if not requests:
            return []
        res = []
        for context, continuation in tqdm([req.args for req in requests]):
            response = self.gguf_completion(context=context, continuation=continuation)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                logprobs = choice.get("logprobs")
                if (
                    logprobs
                    and "token_logprobs" in logprobs
                    and logprobs["token_logprobs"]
                ):
                    logprob, is_greedy = get_result(logprobs, len(context))
                    res.append((logprob, is_greedy))
                else:
                    logger.warning(
                        "Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list."
                    )
            else:
                logger.error(
                    f"Invalid response for loglikelihood. Response: {response}"
                )
                assert False
        return res

    def generate_until(self, requests):
        if not requests:
            return []

        res = []
        for request in tqdm([req.args for req in requests]):
            inp = request[0]
            request_args = request[1]
            until = request_args.get("until", ["</s>"])
            response = self.gguf_completion(context=inp, stop=until)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                if "text" in choice:
                    generated_text = choice["text"].strip()
                    res.append(generated_text)
                else:
                    logger.error(
                        f"Invalid response for greedy_until. Response: {response}"
                    )
                    res.append(None)  # Add default value in case of error
            else:
                logger.error(f"Invalid response for greedy_until. Response: {response}")
                res.append(None)  # Add default value in case of error
        return res

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError(
            "loglikelihood_rolling not yet supported for GGUF models"
        )