metrics.py 9.32 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import logging
&'s avatar
& committed
2
import math
lintangsutawika's avatar
lintangsutawika committed
3
import random
4
5
from collections.abc import Iterable

lintangsutawika's avatar
lintangsutawika committed
6
import evaluate
7
8
9
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
10

11
from lm_eval.api.registry import register_aggregation, register_metric
12

lintangsutawika's avatar
lintangsutawika committed
13

14
eval_logger = logging.getLogger("lm-eval")
15

16

17
# Register Aggregations First
18
@register_aggregation("mean")
19
20
21
22
def mean(arr):
    return sum(arr) / len(arr)


23
@register_aggregation("median")
24
25
26
27
def median(arr):
    return arr[len(arr) // 2]


28
@register_aggregation("weighted_mean")
lintangsutawika's avatar
lintangsutawika committed
29
30
31
32
33
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


34
35
36
37
38
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
)
lintangsutawika's avatar
lintangsutawika committed
39
40
def perplexity(items):
    return math.exp(-mean(items))
41

lintangsutawika's avatar
lintangsutawika committed
42
43
44
45
46
47
48
49

@register_metric(
    metric=["word_perplexity", "byte_perplexity"],
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
def weighted_perplexity(items):  # This is a passthrough function
    return math.exp(-weighted_mean(items))
50
51


52
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
53
54
55
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
56
)
lintangsutawika's avatar
lintangsutawika committed
57
58
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)
59
60


lintangsutawika's avatar
lintangsutawika committed
61
62
63
64
65
@register_metric(
    metric="f1",
    higher_is_better=True,
    output_type="multiple_choice",
)
haileyschoelkopf's avatar
haileyschoelkopf committed
66
67
68
69
70
71
72
73
74
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


lintangsutawika's avatar
lintangsutawika committed
75
76
77
78
79
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
)
haileyschoelkopf's avatar
haileyschoelkopf committed
80
81
82
83
84
85
86
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


lintangsutawika's avatar
lintangsutawika committed
87
88
89
90
91
@register_metric(
    metric="bleu",
    higher_is_better=True,
    output_type="generate_until",
)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
109
110
111
112
113
@register_metric(
    metric="chrf",
    higher_is_better=True,
    output_type="generate_until",
)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
128
129
130
131
132
@register_metric(
    metric="ter",
    higher_is_better=True,
    output_type="generate_until",
)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


148
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
149
150
151
    metric=["acc", "acc_norm"],
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
152
)
lintangsutawika's avatar
lintangsutawika committed
153
154
def aggregate_acc_fn(items):
    return mean(items)
155
156
157


@register_metric(
lintangsutawika's avatar
lintangsutawika committed
158
159
160
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
161
)
lintangsutawika's avatar
lintangsutawika committed
162
163
164
def acc_mutual_info_fn(items):
    return mean(items)

165

166
exact_match = evaluate.load("exact_match")
167

168

169
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
170
171
172
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
173
)
174
def hf_evaluate_fn(**kwargs):
lintangsutawika's avatar
lintangsutawika committed
175
    return exact_match.compute(**kwargs)
176

&'s avatar
& committed
177

Leo Gao's avatar
Leo Gao committed
178
def pop_stddev(arr):
179
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
180
181
182
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
183
def sample_stddev(arr):
184
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
185
186
187
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
188
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
189
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
190
191


lintangsutawika's avatar
lintangsutawika committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc
214
215


Leo Gao's avatar
Leo Gao committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
233
234
235
236
237
238
239
240
241
242

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
278
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
279
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
280
281
        self.f = f
        self.n = n
282

Leo Gao's avatar
Leo Gao committed
283
284
285
286
287
288
289
290
291
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
292

293
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
294
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
295

Leo Gao's avatar
Leo Gao committed
296
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
297
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
298
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
299
300
301
302
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
303
    res = []
304
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
305
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
306

Leo Gao's avatar
Leo Gao committed
307
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
308
309
    for bootstrap in tqdm(
        pool.imap(
310
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
311
312
313
314
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
315
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
316
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
317

Leo Gao's avatar
Leo Gao committed
318
    pool.close()
Leo Gao's avatar
Leo Gao committed
319
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
320
321


322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)