fwe_utils.py 5.41 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import itertools
import random
import string

import datasets
import numpy as np
import transformers
from scipy.special import zeta
from tqdm import tqdm

Baber's avatar
Baber committed
24
from lm_eval.tasks.ruler.common_utils import DEFAULT_SEQ_LENGTHS, get_tokenizer
Baber's avatar
Baber committed
25
26


Baber's avatar
fixup  
Baber committed
27
28
29
30
31
CONFIG = {
    "tokens_to_generate": 50,
    "template": """Read the following coded text and track the frequency of each coded word. Find the three most frequently appeared coded words. {context}\nQuestion: Do not provide any explanation. Please ignore the dots '....'. What are the three most frequently appeared words in the above coded text?""",
    "answer_prefix": """ Answer: According to the coded text above, the three most frequently appeared words are:""",
}
Baber's avatar
Baber committed
32
33
34


SEED = 42
Baber's avatar
fixup  
Baber committed
35
TEMPLATE = CONFIG["template"] + CONFIG["answer_prefix"]
Baber's avatar
Baber committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111


def generate_input_output(
    max_len: int,
    tokenizer: "transformers.PreTrainedTokenizerFast",
    num_words=-1,
    coded_wordlen=6,
    vocab_size=2000,
    incremental=10,
    alpha=2.0,
) -> tuple[str, list[str], int]:
    # generate vocab
    vocab = [
        "".join(random.choices(string.ascii_lowercase, k=coded_wordlen))
        for _ in range(vocab_size)
    ]
    while len(set(vocab)) < vocab_size:
        vocab.append("".join(random.choices(string.ascii_lowercase, k=coded_wordlen)))
    vocab = sorted(list(set(vocab)))
    random.Random(SEED).shuffle(vocab)
    vocab[0] = "..."  # treat the top ranked as noise

    # sample words
    template = TEMPLATE

    def gen_text(num_words):
        k = np.arange(1, len(vocab) + 1)
        sampled_cnt = num_words * (k**-alpha) / zeta(alpha)
        sampled_words = [[w] * zi for w, zi in zip(vocab, sampled_cnt.astype(int))]
        sampled_words = [x for wlst in sampled_words for x in wlst]
        random.Random(SEED).shuffle(sampled_words)
        return template.format(context=" ".join(sampled_words), query=""), vocab[1:4]

    if num_words > 0:
        num_words = num_words
        text, answer = gen_text(num_words)
        while len(tokenizer(text).input_ids) > max_len:
            num_words -= incremental
            text, answer = gen_text(num_words)
    else:
        num_words = max_len // coded_wordlen  # init
        text, answer = gen_text(num_words)
        while len(tokenizer(text).input_ids) < max_len:
            num_words += incremental
            text, answer = gen_text(num_words)
        num_words -= incremental
    text, answer = gen_text(num_words)
    return text, answer, num_words


def sys_kwext(
    tokenizer: "transformers.PreTrainedTokenizerFast",
    max_seq_length: int,
    num_samples: int = 500,
    vocab_size: int = -1,
    coded_wordlen: int = 6,
    alpha: float = 2.0,
    tokens_to_generate: int = 50,
    remove_newline_tab: bool = False,
) -> list[dict]:
    write_jsons = []
    tokens_to_generate = tokens_to_generate

    vocab_size = max_seq_length // 50 if vocab_size == -1 else vocab_size

    # get number of words
    input_max_len = max_seq_length
    _, _, num_example_words = generate_input_output(
        input_max_len,
        tokenizer,
        coded_wordlen=coded_wordlen,
        vocab_size=vocab_size,
        incremental=input_max_len // 32,
        alpha=alpha,
    )
    # Generate samples
Baber's avatar
cleanup  
Baber committed
112
113
114
    for index in tqdm(
        range(num_samples), desc=f"Generating FWE Samples | {max_seq_length}"
    ):
Baber's avatar
Baber committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        # construct input
        input_max_len = max_seq_length
        input_text, answer, _ = generate_input_output(
            input_max_len,
            tokenizer,
            num_words=num_example_words,
            coded_wordlen=coded_wordlen,
            vocab_size=vocab_size,
            incremental=input_max_len // 32,
            alpha=alpha,
        )

        length = len(tokenizer(input_text).input_ids) + tokens_to_generate

        if remove_newline_tab:
            input_text = " ".join(
                input_text.replace("\n", " ").replace("\t", " ").strip().split()
            )

        formatted_output = {
            "index": index,
Baber's avatar
fixup  
Baber committed
136
            "input": input_text[: input_text.rfind(CONFIG["answer_prefix"])].strip(),
Baber's avatar
Baber committed
137
138
            "outputs": answer,
            "length": length,
Baber's avatar
cleanup  
Baber committed
139
            "max_length": max_seq_length,
Baber's avatar
fixup  
Baber committed
140
            "gen_prefix": CONFIG["answer_prefix"].strip(),
Baber's avatar
Baber committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        }
        write_jsons.append(formatted_output)

    return write_jsons


def get_dataset(pretrained, max_seq_length=None, **kwargs):
    tokenizer = get_tokenizer(pretrained)
    write_jsons = sys_kwext(
        tokenizer=tokenizer,
        max_seq_length=max_seq_length,
    )
    return write_jsons


def fwe_download(**kwargs):
    pretrained = kwargs.get("tokenizer", kwargs.get("pretrained", {}))
Baber's avatar
nit  
Baber committed
158
159
160
161
    df = (
        get_dataset(pretrained, max_seq_length=seq)
        for seq in kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    )
Baber's avatar
Baber committed
162
163
164
165
166
167

    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }