test_evaluator.py 1.15 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
3
import lm_eval.tasks as tasks
import lm_eval.models as models
import lm_eval.evaluator as evaluator
4
import random
Leo Gao's avatar
Leo Gao committed
5
6
7
8
9
10
import pytest


# TODO: more fine grained unit tests rather than this big honking integration
# test once we break evaluator into smaller, more manageable pieces

Leo Gao's avatar
Leo Gao committed
11
@pytest.mark.parametrize("taskname,Task", tasks.TASK_REGISTRY.items())
Leo Gao's avatar
Leo Gao committed
12
13
14
def test_evaluator(taskname, Task):
    task_dict = tasks.get_task_dict([taskname])
    lm = models.get_model('dummy')()
15
16
17

    def ll_fn(reqs):
        for ctx, cont in reqs:
Leo Gao's avatar
Leo Gao committed
18
            if len(ctx) == 0: continue
19
20
21
22
23
24
25
26
27
28
29
            # space convention
            assert ctx[-1] != ' '
            assert cont[0] == ' ' or ctx[-1] == '\n'
        
        res = []
        
        random.seed(42)
        for _ in reqs:
            res.append((-random.random(), False))

        return res
Jason Phang's avatar
Jason Phang committed
30
31
32
33
34
35
36
37

    def ll_perp_fn(reqs):
        for string, in reqs:
            assert isinstance(string, str)

        res = []
        random.seed(42)
        for _ in reqs:
Leo Gao's avatar
Leo Gao committed
38
            res.append(-random.random())
Jason Phang's avatar
Jason Phang committed
39
40

        return res
41
42

    lm.loglikelihood = ll_fn
43
    lm.loglikelihood_rolling = ll_perp_fn
Leo Gao's avatar
Leo Gao committed
44
    evaluator.evaluate(lm, task_dict, False, 0, 10)