metrics.py 11.5 KB
Newer Older
&'s avatar
& committed
1
import math
2
3
from collections.abc import Iterable

lintangsutawika's avatar
update  
lintangsutawika committed
4
import abc
5
6
7
import numpy as np
import sacrebleu
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
8
import random
lintangsutawika's avatar
lintangsutawika committed
9
import evaluate
&'s avatar
& committed
10

11
12
from lm_eval.api.registry import register_metric, register_aggregation

13
import logging
lintangsutawika's avatar
lintangsutawika committed
14

15
eval_logger = logging.getLogger("lm-eval")
16

17
18
19
20
21
22

class BaseMetric:
    def __init__(
        self,
    ) -> None:

lintangsutawika's avatar
update  
lintangsutawika committed
23
24
25
    @abc.abstractmethod
    def update(self, *items):
        pass
26

lintangsutawika's avatar
update  
lintangsutawika committed
27
28
29
    @abc.abstractmethod
    def compute(self, *items):
        pass
30
31


32
33
34
35
36
37
38
39
def mean(arr):
    return sum(arr) / len(arr)


def median(arr):
    return arr[len(arr) // 2]


40
41
42
43
44
45
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
)
class PerplexityMetric(BaseMetric):
lintangsutawika's avatar
update  
lintangsutawika committed
46
    def update(self, ll, is_greedy):
47
        return ll
48

lintangsutawika's avatar
update  
lintangsutawika committed
49
    def compute(self, items):
50
        return math.exp(-mean(items))
51
52


53
54
55
56
57
58
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type="loglikelihood",
)
class LoglikelihoodAccMetric(BaseMetric):
lintangsutawika's avatar
update  
lintangsutawika committed
59
    def update(self, ll, is_greedy):
60
        return int(is_greedy)
61

lintangsutawika's avatar
update  
lintangsutawika committed
62
63
    def compute(self, items):
        return math.exp(-mean(items))
64

haileyschoelkopf's avatar
haileyschoelkopf committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


133
134
135
136
137
138
139
140
# @register_metric(
#     metric="acc",
#     higher_is_better=True,
#     output_type=["loglikelihood", "multiple_choice"],
#     aggregation="mean",
# )
# def acc_fn(items):  # This is a passthrough function
#     return items
141
142


143
144
145
146
147
148
149
150
# @register_metric(
#     metric="acc_norm",
#     higher_is_better=True,
#     output_type=["loglikelihood", "multiple_choice"],
#     aggregation="mean",
# )
# def acc_norm_fn(items):  # This is a passthrough function
#     return items
151
152


153
154
155
156
157
158
159
160
# @register_metric(
#     metric="acc_mutual_info",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="mean",
# )
# def acc_mutual_info_fn(items):  # This is a passthrough function
#     return items
161
162


163
164
165
exact_match = evaluate.load("exact_match")


166
167
168
169
170
171
172
173
# @register_metric(
#     metric="exact_match",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="mean",
# )
# def exact_match_fn(**kwargs):
#     return exact_match.compute(**kwargs)
174
175
176
177
178
179
180


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
181
182
183
184
185
186
class BytePerplexityMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _words

    def set_wise_compute(self, items):
        return math.exp(-weighted_mean(items))
187
188
189
190
191
192
193


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
194
195
196
197
198
199
class BytePerplexityMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _bytes

    def set_wise_compute(self, items):
        return math.exp(-weighted_mean(items))
200
201
202
203
204
205
206


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
207
208
209
210
211
212
class BitsPerByteMetric(BaseMetric):
    def sample_wise_compute(self, loglikelihood, _words, _bytes):
        return loglikelihood, _bytes

    def set_wise_compute(self, items):
        return -weighted_mean(items) / math.log(2)
213

&'s avatar
& committed
214

Leo Gao's avatar
Leo Gao committed
215
def pop_stddev(arr):
216
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
217
218
219
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
220
def sample_stddev(arr):
221
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
222
223
224
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
225
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
226
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
227
228


229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# @register_metric(
#     metric="mcc",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="matthews_corrcoef",
# )
# def mcc_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="f1",
#     higher_is_better=True,
#     output_type="multiple_choice",
#     aggregation="f1",
# )
# def f1_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="bleu",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="bleu",
# )
# def bleu_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="chrf",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="chrf",
# )
# def chrf_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="ter",
#     higher_is_better=True,
#     output_type="generate_until",
#     aggregation="ter",
# )
# def ter_fn(items):  # This is a passthrough function
#     return items


# @register_metric(
#     metric="acc_all",
#     higher_is_better=True,
#     output_type="loglikelihood",
#     aggregation="mean",
# )
# def acc_all(items):
#     # Only count as correct if all answers are labeled correctly for each question
#     question_scoring_dict = {}
#     preds = list(zip(*items))[0]
#     docs = list(zip(*items))[1]

#     for doc, pred in zip(docs, preds):
#         paragraph_id = doc["idx"]["paragraph"]
#         question_id = doc["idx"]["question"]
#         if (paragraph_id, question_id) not in question_scoring_dict:
#             question_scoring_dict[(paragraph_id, question_id)] = []

#         gold_label = doc["label"] == 1

#         question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
#     acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
#     return acc
302
303


Leo Gao's avatar
Leo Gao committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
321
322
323
324
325
326
327
328
329
330

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
371
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
372
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
373
374
        self.f = f
        self.n = n
375

Leo Gao's avatar
Leo Gao committed
376
377
378
379
380
381
382
383
384
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
385

386
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
387
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
388

Leo Gao's avatar
Leo Gao committed
389
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
390
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
391
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
392
393
394
395
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
396
    res = []
397
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
398
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
399

Leo Gao's avatar
Leo Gao committed
400
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
401
402
    for bootstrap in tqdm(
        pool.imap(
403
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
404
405
406
407
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
408
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
409
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
410

Leo Gao's avatar
Leo Gao committed
411
    pool.close()
Leo Gao's avatar
Leo Gao committed
412
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
413
414


415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)