scrolls.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
SCROLLS: Standardized CompaRison Over Long Language Sequences
https://arxiv.org/abs/2201.03533

SCROLLS is a suite of datasets that require synthesizing information over long texts.
The benchmark includes seven natural language tasks across multiple domains,
including summarization, question answering, and natural language inference.

Homepage: https://www.scrolls-benchmark.com/

Since SCROLLS tasks are generally longer than the maximum sequence length of many models,
it is possible to create "subset" tasks that contain only those samples whose tokenized length
is less than some pre-defined limit. For example, to create a subset of "Qasper" that would
be suitable for a model using the GPTNeoX tokenizer and a 4K maximium sequence length:

```
class QasperGPTNeoX4K(Qasper):
    PRUNE_TOKENIZERS = ["EleutherAI/pythia-410m-deduped"]
    PRUNE_MAX_TOKENS = 4096
    PRUNE_NUM_PROC = _num_cpu_cores() # optional, to speed up pruning of large datasets like NarrativeQA
```

`PRUNE_TOKENIZERS` can contain more than one tokenizer; this will include only samples that are
less than `PRUNE_MAX_TOKENS` for ALL of the tokenizers. This can be useful to comparing models
that use different tokenizers but the same maximum sequence length.

Once the subset task class has been defined in this file, it can be used by adding the class
to `lm_eval/tasks/__init__.py`.

NOTE: GovReport may need `max_gen_toks` set larger for causal models.
"""
from abc import abstractmethod
from datasets import load_metric
from transformers import AutoTokenizer
from lm_eval.base import rf, Task
from lm_eval.metrics import mean
from functools import reduce
import transformers.data.metrics.squad_metrics as squad_metrics
import numpy as np
import re

_CITATION = """
@inproceedings{shaham-etal-2022-scrolls,
    title = "{SCROLLS}: Standardized {C}ompa{R}ison Over Long Language Sequences",
jonabur's avatar
jonabur committed
45
    author = "Shaham, Uri  and
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
      Segal, Elad  and
      Ivgi, Maor  and
      Efrat, Avia  and
      Yoran, Ori  and
      Haviv, Adi  and
      Gupta, Ankit  and
      Xiong, Wenhan  and
      Geva, Mor  and
      Berant, Jonathan  and
      Levy, Omer",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-main.823",
    pages = "12007--12021"
}
"""

# SCROLLS is formualted as a sequence-to-sequence task.
# To allow for evaluation of causal models, we'll
# reformualte these with appropriate prompts


def _download_metric():
    import os
    import shutil
    from huggingface_hub import hf_hub_download
jonabur's avatar
jonabur committed
75
76
77
78

    scrolls_metric_path = hf_hub_download(
        repo_id="tau/scrolls", repo_type="dataset", filename="metrics/scrolls.py"
    )
79
    updated_scrolls_metric_path = (
jonabur's avatar
jonabur committed
80
81
82
        os.path.dirname(scrolls_metric_path)
        + os.path.basename(scrolls_metric_path).replace(".", "_")
        + ".py"
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    )
    shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
    return updated_scrolls_metric_path


def _process_doc_prepended_question(doc):
    # "When a query is given in addition to the raw text (as
    # in QMSum, Qasper, NarrativeQA, QuALITY, and ContractNLI),
    # we prepend it to the text, using two newlines as a natural separator"
    input = doc["input"]
    split = input.find("\n\n")
    return {
        "id": doc["id"],
        "pid": doc["pid"],
        "input": input,
        "outputs": doc["outputs"],
        "question": input[0:split],
jonabur's avatar
jonabur committed
100
        "text": input[split + 2 :],
101
102
103
104
105
106
107
108
109
    }


def _drop_duplicates_in_input(untokenized_dataset):
    # from scrolls/evaluator/dataset_evaluator.py

    indices_to_keep = []
    id_to_idx = {}
    outputs = []
jonabur's avatar
jonabur committed
110
111
112
    for i, (id_, output) in enumerate(
        zip(untokenized_dataset["id"], untokenized_dataset["output"])
    ):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        if id_ in id_to_idx:
            outputs[id_to_idx[id_]].append(output)
            continue
        indices_to_keep.append(i)
        id_to_idx[id_] = len(outputs)
        outputs.append([output])
    untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices()
    untokenized_dataset = untokenized_dataset.remove_columns("output")
    untokenized_dataset = untokenized_dataset.add_column("outputs", outputs)
    return untokenized_dataset


def _num_cpu_cores():
    # https://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-using-python/55423170#55423170
    try:
        import psutil
jonabur's avatar
jonabur committed
129

130
131
132
        return psutil.cpu_count(logical=False)
    except ImportError:
        import os
jonabur's avatar
jonabur committed
133

134
135
136
137
138
139
140
141
142
143
144
145
146
        return len(os.sched_getaffinity(0))


class _SCROLLSTask(Task):
    VERSION = 0
    DATASET_PATH = "tau/scrolls"
    DATASET_NAME = None
    PRUNE_TOKENIZERS = None
    PRUNE_MAX_TOKENS = None
    PRUNE_NUM_PROC = None

    def __init__(self, no_metric=False):
        super().__init__()
jonabur's avatar
jonabur committed
147
148
149
150
151
        self.metric = (
            load_metric(_download_metric(), config_name=self.DATASET_NAME)
            if not no_metric
            else None
        )
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def training_docs(self):
        for doc in self.dataset["train"]:
            yield from self._process_doc(doc)

    def validation_docs(self):
        for doc in self.dataset["validation"]:
            yield from self._process_doc(doc)

    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
        return doc["input"]

    def download(self, *args, **kwargs):
        super().download(*args, **kwargs)
        del self.dataset["test"]
        for split in self.dataset:
            self.dataset[split] = _drop_duplicates_in_input(self.dataset[split])
        if self.PRUNE_TOKENIZERS is not None and self.PRUNE_TOKENIZERS is not None:
            self.prune()

    def _get_prune_text(self, sample):
        return self.doc_to_text(self._process_doc(sample)[0])

    def prune(self):
        """Create a pruned version of a SCROLLS task dataset containing only inputs
        that are less than `max_tokens` when tokenized by each tokenizer
        """

jonabur's avatar
jonabur committed
192
193
194
195
        tokenizers = [
            AutoTokenizer.from_pretrained(tokenizer)
            for tokenizer in self.PRUNE_TOKENIZERS
        ]
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        cache = {}

        def _filter(sample):
            text = self._get_prune_text(sample)
            cached = cache.get(text, None)
            if cached is None:
                for tokenizer in tokenizers:
                    if len(tokenizer(text).input_ids) > self.PRUNE_MAX_TOKENS:
                        cache[text] = False
                        return False
                cache[text] = True
                return True
            else:
                return cached

        self.dataset = self.dataset.filter(_filter, num_proc=self.PRUNE_NUM_PROC)

    def doc_to_target(self, doc):
        return " " + ", ".join(doc["outputs"])

    def doc_to_text(self, doc):
        return f"{doc['text']}\n\nQuestion: {doc['question']}\nAnswer:"

    def higher_is_better(self):
        return {x: True for x in self._scrolls_metrics().keys()}

    @abstractmethod
    def _scrolls_metrics(self):
        pass

    def _make_compute_metrics(self, value):
        def compute_metrics(samples):
            predictions, references = zip(*samples)  # unzip, if you will
jonabur's avatar
jonabur committed
229
230
231
            computed = self.metric.compute(
                predictions=predictions, references=references
            )
232
            return computed[value]
jonabur's avatar
jonabur committed
233

234
235
236
237
        return compute_metrics

    def aggregation(self):
        return {
jonabur's avatar
jonabur committed
238
239
            key: self._make_compute_metrics(value)
            for key, value in self._scrolls_metrics().items()
240
241
242
243
244
245
246
247
248
249
250
        }


class _SCROLLSMultipleChoiceTask(_SCROLLSTask):
    def __init__(self):
        super().__init__(no_metric=True)

    def _scrolls_metrics(self):
        return None

    def aggregation(self):
jonabur's avatar
jonabur committed
251
        return {"em": mean, "acc": mean, "acc_norm": mean}
252
253

    def higher_is_better(self):
jonabur's avatar
jonabur committed
254
        return {"em": True, "acc": True, "acc_norm": True}
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    def process_results(self, doc, results):
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
            "em": acc_norm * 100.0,
        }

    def construct_requests(self, doc, ctx):
        lls = [
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
        ]

        return lls


class _SCROLLSSummaryTask(_SCROLLSTask):
    def _process_doc(self, doc):
        return [doc]

    def _scrolls_metrics(self):
jonabur's avatar
jonabur committed
282
283
284
285
286
        return {
            "rouge1": "rouge/rouge1",
            "rouge2": "rouge/rouge2",
            "rougeL": "rouge/rougeL",
        }
287
288
289
290
291

    def process_results(self, doc, results):
        return {
            "rouge1": (results[0], doc["outputs"]),
            "rouge2": (results[0], doc["outputs"]),
jonabur's avatar
jonabur committed
292
            "rougeL": (results[0], doc["outputs"]),
293
294
295
        }

    def construct_requests(self, doc, ctx):
jonabur's avatar
jonabur committed
296
        return [rf.greedy_until(ctx, {"until": ["\n"]})]
297
298
299
300
301
302
303
304
305
306
307
308
309
310

    def doc_to_text(self, doc):
        return f"{doc['input']}\n\nQuestion: What is a summary of the preceding text?\nAnswer:"


class Qasper(_SCROLLSTask):
    """A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
    https://arxiv.org/abs/2105.03011
    """

    DATASET_NAME = "qasper"

    def _process_doc(self, doc):
        doc = _process_doc_prepended_question(doc)
jonabur's avatar
jonabur committed
311
312
313
314
315
316
        doc["is_yes_no"] = reduce(
            lambda prev, cur: prev
            and squad_metrics.normalize_answer(cur) in ["yes", "no"],
            doc["outputs"],
            True,
        )
317
318
319
320
321
322
323
324
325
326
327
328
        return [doc]

    def _scrolls_metrics(self):
        return {"f1": "f1"}

    def process_results(self, doc, results):
        if doc["is_yes_no"]:
            prediction = " yes" if results[0] > results[1] else " no"
        elif len(results[0].strip()) == 0:
            prediction = "Unanswerable"
        else:
            prediction = results[0]
jonabur's avatar
jonabur committed
329
        return {"f1": (prediction, doc["outputs"])}
330
331
332
333
334
335
336

    def construct_requests(self, doc, ctx):
        if doc["is_yes_no"]:
            ll_yes, _ = rf.loglikelihood(ctx, " yes")
            ll_no, _ = rf.loglikelihood(ctx, " no")
            return [ll_yes, ll_no]
        else:
jonabur's avatar
jonabur committed
337
            return [rf.greedy_until(ctx, {"until": ["\n"]})]
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358


class QuALITY(_SCROLLSMultipleChoiceTask):
    """QuALITY: Question Answering with Long Input Texts, Yes!
    https://arxiv.org/abs/2112.08608
    """

    DATASET_NAME = "quality"
    _multiple_choice_pattern = re.compile(r" *\([A-D]\) *")

    @staticmethod
    def _normalize_answer(text):
        return " ".join(text.split()).strip()

    def _process_doc(self, doc):
        doc = _process_doc_prepended_question(doc)

        split = doc["text"].find("\n\n", doc["text"].find("(D)"))
        choices_text = doc["text"][:split]

        doc["text"] = doc["text"][split:].strip()
jonabur's avatar
jonabur committed
359
360
361
362
        doc["choices"] = [
            QuALITY._normalize_answer(choice)
            for choice in re.split(QuALITY._multiple_choice_pattern, choices_text)[1:]
        ]
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        doc["gold"] = doc["choices"].index(QuALITY._normalize_answer(doc["outputs"][0]))

        return [doc]


class NarrativeQA(_SCROLLSTask):
    """The NarrativeQA Reading Comprehension Challenge
    https://arxiv.org/abs/1712.07040
    """

    DATASET_NAME = "narrative_qa"

    def _process_doc(self, doc):
        return [_process_doc_prepended_question(doc)]

    def _scrolls_metrics(self):
        return {"f1": "f1"}

    def _get_prune_text(self, doc):
        # pruning narrativeqa takes forever -- let's cheat a bit
        # and just cache on the text, not the question, since
        # the dataset is different questions about the same large
        # documents
        return self._process_doc(doc)[0]["text"]

    def process_results(self, doc, results):
jonabur's avatar
jonabur committed
389
        return {"f1": (results[0], doc["outputs"])}
390
391

    def construct_requests(self, doc, ctx):
jonabur's avatar
jonabur committed
392
        return [rf.greedy_until(ctx, {"until": ["\n"]})]
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457


class ContractNLI(_SCROLLSMultipleChoiceTask):
    """ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
    https://arxiv.org/abs/1712.07040
    """

    DATASET_NAME = "contract_nli"
    CHOICES = ["Not mentioned", "Entailment", "Contradiction"]

    def _process_doc(self, doc):
        doc = _process_doc_prepended_question(doc)
        doc["choices"] = ContractNLI.CHOICES
        doc["gold"] = ContractNLI.CHOICES.index(doc["outputs"][0])
        return [doc]

    def doc_to_text(self, doc):
        return f"{doc['text']}\n\nHypothesis: {doc['question']}\nConclusion:"


class GovReport(_SCROLLSSummaryTask):
    """Efficient Attentions for Long Document Summarization
    https://arxiv.org/abs/2104.02112

    Note: The average length of the reference summaries is ~3,000
    characters, or ~600 tokens as tokenized by GPT-NeoX. For causal models,
    it is recommended to set `max_gen_toks` sufficently large (e.g. 1024)
    to allow a full summary to be generated.
    """

    DATASET_NAME = "gov_report"


class SummScreenFD(_SCROLLSSummaryTask):
    """SummScreen: A Dataset for Abstractive Screenplay Summarization
    https://arxiv.org/abs/2104.07091
    """

    DATASET_NAME = "summ_screen_fd"


class QMSum(_SCROLLSSummaryTask):
    """QMSum: A New Benchmark for Query-based Multi-domain
    Meeting Summarization

    https://arxiv.org/abs/2104.05938
    """

    DATASET_NAME = "qmsum"

    def _process_doc(self, doc):
        return [_process_doc_prepended_question(doc)]

    def doc_to_text(self, doc):
        return f"{doc['text']}\n\nQuestion: {doc['question']}\nAnswer:"


def construct_tasks():
    return {
        "scrolls_qasper": Qasper,
        "scrolls_quality": QuALITY,
        "scrolls_narrativeqa": NarrativeQA,
        "scrolls_contractnli": ContractNLI,
        "scrolls_govreport": GovReport,
        "scrolls_summscreenfd": SummScreenFD,
jonabur's avatar
jonabur committed
458
        "scrolls_qmsum": QMSum,
459
    }