lambada.py 3.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
The LAMBADA dataset: Word prediction requiring a broad discourse context∗
https://arxiv.org/pdf/1606.06031.pdf

LAMBADA is a dataset to evaluate the capabilities of computational models for text
understanding by means of a word prediction task. LAMBADA is a collection of narrative
passages sharing the characteristic that human subjects are able to guess their last
word if they are exposed to the whole passage, but not if they only see the last
sentence preceding the target word. To succeed on LAMBADA, computational models
cannot simply rely on local context, but must be able to keep track of information
in the broader discourse.

Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
"""
Jonathan Tow's avatar
Jonathan Tow committed
15
import inspect
jon-tow's avatar
jon-tow committed
16
import lm_eval.datasets.lambada_openai.lambada_openai
&'s avatar
& committed
17
18
from lm_eval.base import Task, rf
from lm_eval.metrics import mean, perplexity
sdtblck's avatar
sdtblck committed
19
20


21
22
_CITATION = """
@misc{
Fabrizio Milo's avatar
Fabrizio Milo committed
23
    author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel},
24
25
26
27
28
29
30
    title={The LAMBADA dataset},
    DOI={10.5281/zenodo.2630551},
    publisher={Zenodo},
    year={2016},
    month={Aug}
}
"""
sdtblck's avatar
sdtblck committed
31
32


jon-tow's avatar
jon-tow committed
33
34
class LambadaBase(Task):
    VERSION = None
sdtblck's avatar
sdtblck committed
35
36

    def training_docs(self):
jon-tow's avatar
jon-tow committed
37
38
        if self.has_training_docs():
            return self.dataset["train"]
sdtblck's avatar
sdtblck committed
39
40

    def validation_docs(self):
jon-tow's avatar
jon-tow committed
41
42
        if self.has_validation_docs():
            return self.dataset["validation"]
Leo Gao's avatar
Leo Gao committed
43

Leo Gao's avatar
Leo Gao committed
44
    def test_docs(self):
jon-tow's avatar
jon-tow committed
45
46
        if self.has_test_docs():
            return self.dataset["test"]
Leo Gao's avatar
Leo Gao committed
47

Leo Gao's avatar
Leo Gao committed
48
    def doc_to_text(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
49
        return doc["text"].rsplit(" ", 1)[0]
sdtblck's avatar
sdtblck committed
50

51
52
53
54
    def should_decontaminate(self):
        return True

    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        return doc["text"]
56

Leo Gao's avatar
Leo Gao committed
57
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
58
        return " " + doc["text"].rsplit(" ", 1)[1]
sdtblck's avatar
sdtblck committed
59

Leo Gao's avatar
Leo Gao committed
60
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
61
        ll, is_greedy = rf.loglikelihood(ctx, self.doc_to_target(doc))
62

Leo Gao's avatar
Leo Gao committed
63
        return ll, is_greedy
Fabrizio Milo's avatar
Fabrizio Milo committed
64

Leo Gao's avatar
Leo Gao committed
65
    def process_results(self, doc, results):
Leo Gao's avatar
Leo Gao committed
66
        ll, is_greedy = results
Leo Gao's avatar
Leo Gao committed
67

Fabrizio Milo's avatar
Fabrizio Milo committed
68
69
        return {"ppl": ll, "acc": int(is_greedy)}

Leo Gao's avatar
Leo Gao committed
70
    def aggregation(self):
Fabrizio Milo's avatar
Fabrizio Milo committed
71
        return {"ppl": perplexity, "acc": mean}
Leo Gao's avatar
Leo Gao committed
72
73

    def higher_is_better(self):
Fabrizio Milo's avatar
Fabrizio Milo committed
74
        return {"ppl": False, "acc": True}
jon-tow's avatar
jon-tow committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110


class LambadaStandard(LambadaBase):
    """The LAMBADA task using the standard original LAMBADA dataset."""

    VERSION = 0
    DATASET_PATH = "lambada"

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True


class LambadaOpenAI(LambadaBase):
    """The LAMBADA task using the LAMBADA OpenAI dataset, a modified version of the
    original LAMBADA dataset created by OpenAI for evaluating their GPT-2 model.

    Reference: https://github.com/openai/gpt-2/issues/131#issuecomment-497136199
    """

    VERSION = 0
    DATASET_PATH = inspect.getfile(lm_eval.datasets.lambada_openai.lambada_openai)

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False