openai_completions.py 16.8 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
import asyncio
import base64
import copy
import itertools
import json
Jason Phang's avatar
gpt3  
Jason Phang committed
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
from functools import cached_property
Baber's avatar
Baber committed
8
from io import BytesIO
Baber's avatar
nits  
Baber committed
9
from operator import itemgetter
Baber Abbasi's avatar
Baber Abbasi committed
10
from typing import Any, Dict, List, Optional, Tuple, Union
11

Baber's avatar
Baber committed
12
13
14
15
16
from PIL import Image
from tenacity import retry, stop_after_attempt, wait_exponential
from tqdm import tqdm

from lm_eval.api.instance import Instance
17
from lm_eval.api.registry import register_model
Baber's avatar
Baber committed
18
from lm_eval.models.api_models import JsonChatStr, TemplateAPI
Baber's avatar
nits  
Baber committed
19
from lm_eval.models.utils import Collator, handle_stop_sequences
20
from lm_eval.utils import eval_logger
Leo Gao's avatar
Leo Gao committed
21

lintangsutawika's avatar
update  
lintangsutawika committed
22

Baber Abbasi's avatar
Baber Abbasi committed
23
24
@register_model("local-completions")
class LocalCompletionsAPI(TemplateAPI):
lintangsutawika's avatar
lintangsutawika committed
25
26
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
27
28
29
30
        base_url=None,
        tokenizer_backend="huggingface",
        **kwargs,
    ):
Baber's avatar
Baber committed
31
        eval_logger.info("Use the AI_API_KEY environment variable to set the API key.")
Baber Abbasi's avatar
Baber Abbasi committed
32
33
34
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
lintangsutawika's avatar
lintangsutawika committed
35

Baber Abbasi's avatar
Baber Abbasi committed
36
37
38
39
40
    def _create_payload(
        self,
        messages: Union[List[List[int]], List[dict], List[str], str],
        generate=False,
        gen_kwargs: Optional[dict] = None,
41
        seed: int = 1234,
42
        eos=None,
Baber Abbasi's avatar
Baber Abbasi committed
43
44
45
46
        **kwargs,
    ) -> dict:
        if generate:
            gen_kwargs.pop("do_sample", False)
47
48
49
50
            if "max_tokens" in gen_kwargs:
                max_tokens = gen_kwargs.pop("max_tokens")
            else:
                max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
51
            temperature = gen_kwargs.pop("temperature", 0)
52
            stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
56
57
58
            return {
                "prompt": messages,
                "model": self.model,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "stop": stop,
59
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
60
61
                **gen_kwargs,
            }
Baber Abbasi's avatar
Baber Abbasi committed
62
        else:
Baber Abbasi's avatar
Baber Abbasi committed
63
64
65
            return {
                "model": self.model,
                "prompt": messages,
66
                "temperature": 0,
Baber Abbasi's avatar
Baber Abbasi committed
67
68
                "max_tokens": 1,
                "logprobs": 1,
69
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
70
71
72
73
74
75
76
77
78
                "echo": True,
            }

    @staticmethod
    def parse_logprobs(
        outputs: Union[Dict, List[Dict]],
        tokens: List[List[int]] = None,
        ctxlens: List[int] = None,
        **kwargs,
lintangsutawika's avatar
lintangsutawika committed
79
80
    ) -> List[Tuple[float, bool]]:
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
81
82
83
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
84
85
86
            for choice, ctxlen in zip(
                sorted(out["choices"], key=itemgetter("index")), ctxlens
            ):
Baber Abbasi's avatar
Baber Abbasi committed
87
88
                assert ctxlen > 0, "Context length must be greater than 0"
                logprobs = sum(choice["logprobs"]["token_logprobs"][ctxlen:-1])
89
                tokens_logprobs = choice["logprobs"]["token_logprobs"][ctxlen:-1]
Baber Abbasi's avatar
Baber Abbasi committed
90
91
                top_logprobs = choice["logprobs"]["top_logprobs"][ctxlen:-1]
                is_greedy = True
92
93
                for tok, top in zip(tokens_logprobs, top_logprobs):
                    if tok != max(top.values()):
Baber Abbasi's avatar
Baber Abbasi committed
94
95
96
97
98
99
100
                        is_greedy = False
                        break
                res.append((logprobs, is_greedy))
        return res

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
lintangsutawika's avatar
lintangsutawika committed
101
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
102
103
104
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
105
            tmp = [None] * len(out["choices"])
Baber Abbasi's avatar
Baber Abbasi committed
106
            for choices in out["choices"]:
107
108
                tmp[choices["index"]] = choices["text"]
            res = res + tmp
Baber Abbasi's avatar
Baber Abbasi committed
109
        return res
lintangsutawika's avatar
lintangsutawika committed
110

Baber Abbasi's avatar
Baber Abbasi committed
111
112
    @property
    def api_key(self):
Baber's avatar
Baber committed
113
        return os.environ.get("AI_API_KEY", "")
lintangsutawika's avatar
lintangsutawika committed
114
115


Baber Abbasi's avatar
Baber Abbasi committed
116
117
118
119
120
121
122
123
124
@register_model("local-chat-completions")
class LocalChatCompletion(LocalCompletionsAPI):
    def __init__(
        self,
        base_url=None,
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
125
126
127
        eval_logger.warning(
            "chat-completions endpoint requires the `--apply_chat_template` flag."
        )
Baber Abbasi's avatar
Baber Abbasi committed
128
129
130
131
132
133
134
135
136
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
        if self._batch_size > 1:
            eval_logger.warning(
                "Chat completions does not support batching. Defaulting to batch size 1."
lintangsutawika's avatar
lintangsutawika committed
137
            )
Baber Abbasi's avatar
Baber Abbasi committed
138
139
140
            self._batch_size = 1

    def _create_payload(
141
142
143
144
145
        self,
        messages: List[Dict],
        generate=False,
        gen_kwargs: dict = None,
        seed=1234,
146
        eos=None,
147
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
148
    ) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
149
150
151
        assert type(messages) is not str, (
            "chat-completions require the --apply_chat_template flag."
        )
Baber Abbasi's avatar
Baber Abbasi committed
152
        gen_kwargs.pop("do_sample", False)
153
154
155
156
        if "max_tokens" in gen_kwargs:
            max_tokens = gen_kwargs.pop("max_tokens")
        else:
            max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
157
        temperature = gen_kwargs.pop("temperature", 0)
158
        stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
Baber Abbasi's avatar
Baber Abbasi committed
159
160
161
162
163
164
165
166
        if not isinstance(stop, (list, tuple)):
            stop = [stop]
        return {
            "messages": messages,
            "model": self.model,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "stop": stop[:4],
167
            "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
168
169
170
171
172
173
174
175
176
            **gen_kwargs,
        }

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
        res = []
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
177
            tmp = [None] * len(out["choices"])
Baber Abbasi's avatar
Baber Abbasi committed
178
            for choices in out["choices"]:
179
180
                tmp[choices["index"]] = choices["message"]["content"]
            res = res + tmp
Baber Abbasi's avatar
Baber Abbasi committed
181
182
183
184
185
186
187
188
189
190
        return res

    def tok_encode(
        self,
        string: Union[str, Any],
        left_truncate_len=None,
        add_special_tokens=None,
        **kwargs,
    ) -> Union[List[str], List[int], Any]:
        return string
lintangsutawika's avatar
lintangsutawika committed
191

Baber Abbasi's avatar
Baber Abbasi committed
192
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
193
194
195
        raise NotImplementedError(
            "Loglikelihood is not supported for chat completions. Consider using the completions API instead."
        )
lintangsutawika's avatar
lintangsutawika committed
196
197


Baber Abbasi's avatar
Baber Abbasi committed
198
199
200
201
@register_model(
    "openai-completions",
)
class OpenAICompletionsAPI(LocalCompletionsAPI):
202
    def __init__(
203
        self,
Baber Abbasi's avatar
Baber Abbasi committed
204
205
        base_url="https://api.openai.com/v1/completions",
        tokenizer_backend="tiktoken",
206
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
207
208
209
210
    ):
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
211

Baber Abbasi's avatar
Baber Abbasi committed
212
213
214
215
216
217
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
218
                "API key not found. Please set the `OPENAI_API_KEY` environment variable."
219
            )
Baber Abbasi's avatar
Baber Abbasi committed
220
        return key
221

Baber Abbasi's avatar
Baber Abbasi committed
222
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
223
224
225
226
227
228
        assert self.model in [
            "babbage-002",
            "davinci-002",
        ], (
            f"Prompt loglikelihoods are only supported by OpenAI's API for {['babbage-002', 'davinci-002']}."
        )
Baber Abbasi's avatar
Baber Abbasi committed
229
        return super().loglikelihood(requests, **kwargs)
230

231
232
233
    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        return ""

234

Baber Abbasi's avatar
Baber Abbasi committed
235
@register_model("openai-chat-completions")
Baber Abbasi's avatar
Baber Abbasi committed
236
237
238
239
240
241
242
243
class OpenAIChatCompletion(LocalChatCompletion):
    def __init__(
        self,
        base_url="https://api.openai.com/v1/chat/completions",
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
244
245
246
247
        if "o1" in kwargs.get("model", ""):
            eval_logger.warning(
                "o1 models do not support `stop` and only support temperature=1"
            )
Baber Abbasi's avatar
Baber Abbasi committed
248
249
250
251
252
253
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
254

Baber Abbasi's avatar
Baber Abbasi committed
255
256
257
258
259
260
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
261
                "API key not found. Please set the `OPENAI_API_KEY` environment variable."
262
            )
Baber Abbasi's avatar
Baber Abbasi committed
263
        return key
264
265
266
267
268

    def loglikelihood(self, requests, **kwargs):
        raise NotImplementedError(
            "Loglikelihood (and therefore `multiple_choice`-type tasks) is not supported for chat completions as OpenAI does not provide prompt logprobs. See https://github.com/EleutherAI/lm-evaluation-harness/issues/942#issuecomment-1777836312 or https://github.com/EleutherAI/lm-evaluation-harness/issues/1196 for more background on this limitation."
        )
Baber's avatar
Baber committed
269

270
271
272
273
274
275
    def _create_payload(
        self,
        messages: List[Dict],
        generate=False,
        gen_kwargs: dict = None,
        seed=1234,
276
        eos="<|endoftext|>",
277
278
        **kwargs,
    ) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
279
280
281
        assert type(messages) is not str, (
            "chat-completions require the --apply_chat_template flag."
        )
282
283
284
285
286
287
        gen_kwargs.pop("do_sample", False)
        if "max_tokens" in gen_kwargs:
            max_tokens = gen_kwargs.pop("max_tokens")
        else:
            max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
        temperature = gen_kwargs.pop("temperature", 0)
288
        stop = handle_stop_sequences(gen_kwargs.pop("until", ["<|endoftext|>"]), eos)
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        if not isinstance(stop, (list, tuple)):
            stop = [stop]
        output = {
            "messages": messages,
            "model": self.model,
            "max_completion_tokens": max_tokens,
            "temperature": temperature,
            "stop": stop[:4],
            "seed": seed,
            **gen_kwargs,
        }
        if "o1" in self.model:
            output.pop("stop")
            output["temperature"] = 1
        return output
Baber's avatar
Baber committed
304

Baber's avatar
Baber committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

@register_model("pixtral-api")
class PixtralAPI(LocalChatCompletion):
    MULTIMODAL = True
    DEFAULT_IMAGE_PLACEHOLDER = "<image>"

    def __init__(
        self,
        max_images: int = 999,
        **kwargs,
    ):
        self.max_images = max_images
        super().__init__(
            tokenizer_backend=None,
            tokenized_requests=False,
            model="mistralai/Pixtral-12B-2409",
            **kwargs,
        )

    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
        res = []

        def _collate_gen(_requests):
            # sort by the length of the non-tokenized contexts
            return -len(_requests[0])

        # Let the API deal with tokenization
        requests, all_gen_kwargs, aux_args = zip(*(req.args for req in requests))
        if self.tokenized_requests:
            encodings_list = self.tok_encode(
                requests, add_special_tokens=self.add_bos_token
            )
        else:
            requests = [
                self.update_json_chat_str_with_image(req, pil_image["visual"])
                for req, pil_image in zip(requests, aux_args)
            ]
            encodings_list = [None] * len(requests)
        requests = [
            (a, b, c) for a, b, c in zip(requests, all_gen_kwargs, encodings_list)
        ]

        re_ord = Collator(
            requests,
            sort_fn=_collate_gen,
            group_by="gen_kwargs",
        )
        chunked = re_ord.get_batched(
            n=self._batch_size if self._concurrent <= 1 else 0, batch_fn=None
        )
        if self._concurrent <= 1:
            pbar = tqdm(desc="Requesting API", total=len(requests))
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
                req = encodings_list if self.tokenized_requests else contexts
                outputs = retry(
                    stop=stop_after_attempt(self.max_retries),
                    wait=wait_exponential(multiplier=0.5, min=1, max=10),
                    reraise=True,
                )(self.model_call)(
                    messages=req,
                    generate=True,
                    gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                )
                for generated_text, context in zip(
                    self.parse_generations(
                        outputs=outputs,
                        contexts=contexts,
                    ),
                    contexts,
                ):
                    if generated_text is not None:
                        res.append(generated_text)

                        # partial caching
                        if context is not None:
                            self.cache_hook.add_partial(
                                "generate_until",
                                (context, all_gen_kwargs[0]),
                                generated_text,
                            )
                            pbar.update(1)
        else:
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
                req = encodings_list if self.tokenized_requests else contexts
                results = itertools.chain.from_iterable(
                    asyncio.run(
                        self.get_batched_requests(
                            req,
                            cache_keys=[(ctx, all_gen_kwargs[0]) for ctx in contexts],
                            generate=True,
                            gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                        )
                    )
                )
                res.extend(results)

        return re_ord.get_original(res)

    @staticmethod
    def encode_pillow_image(img):
        if img.mode == "P":
            img = img.convert("RGB")
        if img.mode == "RGBA":
            # Create a white background
            background = Image.new("RGB", img.size, (255, 255, 255))
            # Paste the image on the background.
            # The alpha channel is automatically used as mask
            background.paste(img, mask=img.split()[3])
            img = background

        buffered = BytesIO()
        img.save(buffered, format="JPEG")

        return base64.b64encode(buffered.getvalue()).decode("utf-8")

    def update_json_chat_str_with_image(
        self, json_chat_str, pil_images: Union["Image.Image", List["Image.Image"]]
    ):
        # Parse the JSON string
        chat_data = json.loads(json_chat_str.prompt)

        # Convert single image to list for consistency
        if not isinstance(pil_images, list):
            pil_images = [pil_images]

        # Encode the Pillow image(s)
        base64_images = [self.encode_pillow_image(img) for img in pil_images]

        # Update the image_url(s) in the chat data
        image_index = 0
        for message in chat_data:
            if message["role"] == "user":
                for content in message["content"]:
                    if content["type"] == "image_url":
                        if image_index < len(base64_images):
                            content["image_url"] = {
                                "url": f"data:image/jpeg;base64,{base64_images[image_index]}"
                            }
                            image_index += 1
                        else:
                            # If we run out of images, set to None or handle as needed
                            content["image_url"] = None

        # Update the JsonChatStr object with the new JSON string
        json_chat_str = JsonChatStr(json.dumps(chat_data))

        return json_chat_str

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]]
    ) -> Union[str, JsonChatStr]:
        """Applies a chat template to a list of chat history between user and model."""
        if self.tokenizer_backend == "huggingface" and self.tokenized_requests:
            return self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        else:
            # bit of a hack. We'll load back before sending to the API
            new_messages = []
            for message in chat_history:
                if message["role"] == "user":
                    # Split the content at <image> placeholder
                    parts = message["content"].split("<image>")
                    new_content = [
                        {"type": "text", "text": parts[0].strip()},
                        {"type": "image_url", "image_url": None},
                    ]
                    if len(parts) > 1:
                        new_content.append({"type": "text", "text": parts[1].strip()})

                    new_messages.append(
                        {"role": message["role"], "content": new_content}
                    )
                else:
                    # For non-user messages, keep the format as is
                    new_messages.append(message)

            return JsonChatStr(json.dumps(new_messages))