test_models.py 10.9 KB
Newer Older
bzantium's avatar
bzantium committed
1
2
3
4
5
import hashlib
import json
import openai
import os
import pickle
Leo Gao's avatar
Leo Gao committed
6
import pytest
7
import unittest.mock as mock
bzantium's avatar
bzantium committed
8

Leo Gao's avatar
Leo Gao committed
9
import lm_eval.models as models
10

Leo Gao's avatar
Leo Gao committed
11

bzantium's avatar
bzantium committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
LOGLIKELIHOOD_TEST_CASES = [
    ("The quick brown fox jumps over the lazy", " dog"),
    ("The quick brown fox jumps over the lazy", " cat"),
    ("The quick brown fox jumps over the lazy", ", lazy dog"),
    ("The quick brown fox jumps over the lazy", ", lazy fox"),
    (
        "The quick brown fox jumps over the lazy",
        ", lazy fox and they both fall to the ground",
    ),
    (
        """A mult""",
        """ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
    ),
    (
        """The term MLP is used ambiguously, sometimes loosely to any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons""",
        """ (with threshold activation); see § Terminology""",
    ),
    (
        """Multilayer perceptrons are sometimes coll""",
        """oquially referred to as "vanilla" neural networks, especially when they have a single hidden layer.[1]""",
    ),
    (
        """An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear""",
        """ activation function.""",
    ),
    (
        """MLP utilizes a supervised""",
        """ learning technique called backpropagation for training.[2][3] Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.[4]""",
    ),
    (
        """Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic""",
        """ in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. """,
    ),
    (
        """Specifically, we train GPT-3, an autoregressive language model with 175""",
        """ billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.""",
    ),
    (
        """A mult""",
        """ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
    ),
    ("""Hello""", """ World"""),
]


# Test HuggingFace Models (GPT-2)


Leo Gao's avatar
Leo Gao committed
60
def test_gpt2():
bzantium's avatar
bzantium committed
61
62
63
64
65
66
67
68
69
    gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
    ) = gpt2.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
Leo Gao's avatar
Leo Gao committed
70
71
72
73

    assert ll_dog > ll_cat
    assert not ig_cat

74
75
76
77
    assert not ll_max_0
    assert ll_max_1
    assert ll_max_2

Leo Gao's avatar
Leo Gao committed
78
    # test empty context
bzantium's avatar
bzantium committed
79
    gpt2.loglikelihood([("", "test")])
Leo Gao's avatar
Leo Gao committed
80

bzantium's avatar
bzantium committed
81
82
83
    (gen,) = gpt2.greedy_until(
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )
Leo Gao's avatar
Leo Gao committed
84

bzantium's avatar
bzantium committed
85
    assert gen == ", lazy fox and they both fall to the ground"
Leo Gao's avatar
Leo Gao committed
86

87
    targets = [
bzantium's avatar
bzantium committed
88
89
90
91
92
93
94
95
96
        -61.60536193847656,
        -56.57843780517578,
        -62.131004333496094,
        -9.799489974975586,
        -153.96334838867188,
        -341.222900390625,
        -731.1475830078125,
        -61.60536193847656,
        -8.682319641113281,
97
    ]
Leo Gao's avatar
Leo Gao committed
98
99

    for (pred, _), tgt in zip(vals, targets):
100
        assert pred == pytest.approx(tgt, rel=1e-3)
Leo Gao's avatar
Leo Gao committed
101

Jason Phang's avatar
Jason Phang committed
102
103

def test_gpt2_perplexity():
bzantium's avatar
bzantium committed
104
    gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
Jason Phang's avatar
Jason Phang committed
105
    test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
106
    perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
bzantium's avatar
bzantium committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    tgt = sum(
        [
            -4.9599953,
            -8.069298,
            -8.308624,
            -10.178513,
            -8.906924,
            -1.9318912,
            -7.745445,
            -7.146077,
            -5.2072,
            -3.5882986,
            -1.9957212,
            -8.044922,
            -0.20841774,
            -5.1096807,
            -0.099879116,
            -8.888423,
            -4.6180487,
        ]
    )
128
    assert perplexity == pytest.approx(tgt, rel=1e-3)
Jason Phang's avatar
Jason Phang committed
129

bzantium's avatar
bzantium committed
130
131
132
    with mock.patch.object(
        models.gpt2.HFLM, "max_length", new_callable=mock.PropertyMock
    ) as mock_max_length:
133
        mock_max_length.return_value = 5
bzantium's avatar
bzantium committed
134
        gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
135
        perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
bzantium's avatar
bzantium committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    tgt = sum(
        [
            -4.96001,
            -8.069275,
            -8.308612,
            -10.178482,
            -8.90691,
            -4.037338,
            -8.09261,
            -11.662385,
            -10.206891,
            -4.425003,
            -2.2563353,
            -7.909143,
            -1.9304147,
            -7.3610134,
            -2.3120654,
            -7.3229,
            -2.1643813,
        ]
    )
157
    assert perplexity == pytest.approx(tgt, rel=1e-3)
bzantium's avatar
bzantium committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324


# Test OpenAI Models (GPT-3)


def openai_mock_completion(**kwargs):
    # Mock completion function
    # Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
    os.makedirs("tests/testdata", exist_ok=True)
    hash = hashlib.sha256(
        json.dumps(kwargs, sort_keys=True).encode("utf-8")
    ).hexdigest()
    fname = f"tests/testdata/gpt3_test_{hash}.pkl"

    if os.path.exists(fname):
        with open(fname, "rb") as fh:
            return pickle.load(fh)
    ret = openai.Completion.create(**kwargs)
    ret.api_key = ""
    with open(fname, "wb") as fh:
        pickle.dump(ret, fh)
    return ret


@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3():
    if "OPENAI_API_SECRET_KEY" not in os.environ:
        os.environ["OPENAI_API_SECRET_KEY"] = ""
    gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
    ) = gpt3.loglikelihood(LOGLIKELIHOOD_TEST_CASES)

    assert ll_dog > ll_cat
    assert not ig_cat

    assert ig_dog
    assert not ll_max_0
    assert not ll_max_1
    assert not ll_max_2

    # test empty context
    gpt3.loglikelihood([("", "test")])

    (gen,) = gpt3.greedy_until(
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )

    assert gen == " dog"

    print([x[0] for x in vals])

    targets = [
        -34.848301606999996,
        -47.148329679999996,
        -45.44380149599999,
        -5.285246016,
        -133.97821690686004,
        -321.2616693239001,
        -658.0299524401041,
        -34.848301606999996,
        -7.525115,
    ]

    for (pred, _), tgt in zip(vals, targets):
        assert pred == pytest.approx(tgt, rel=1e-3)


@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3_perplexity():
    if "OPENAI_API_SECRET_KEY" not in os.environ:
        os.environ["OPENAI_API_SECRET_KEY"] = ""
    gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
    test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
    perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
    tgt = -84.38819608
    assert perplexity == pytest.approx(tgt, rel=1e-3)

    # Hack: modify gpt3 to have shorter context length to induce rolling windows
    with mock.patch.object(
        models.gpt3.GPT3LM, "max_length", new_callable=mock.PropertyMock
    ) as mock_max_length:
        mock_max_length.return_value = 5
        gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
        perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
    tgt = -101.81967209999999
    assert perplexity == pytest.approx(tgt, rel=1e-3)


# Test TextSynth Models (GPT-J)


def textsynth_mock_completion(**kwargs):
    # Mock completion function
    # Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
    import requests

    os.makedirs("tests/testdata", exist_ok=True)
    hash_kwargs = {k: v for k, v in kwargs.items() if k != "headers"}
    hash = hashlib.sha256(
        json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
    ).hexdigest()
    fname = f"tests/testdata/textsynth_test_{hash}.pkl"

    if os.path.exists(fname):
        with open(fname, "rb") as fh:
            return pickle.load(fh)
    ret = requests.post(**kwargs)
    with open(fname, "wb") as fh:
        pickle.dump(ret, fh)
    return ret


@mock.patch(
    "lm_eval.models.textsynth.textsynth_completion", new=textsynth_mock_completion
)
def test_textsynth():
    if "TEXTSYNTH_API_SECRET_KEY" not in os.environ:
        os.environ["TEXTSYNTH_API_SECRET_KEY"] = ""
    textsynth = models.get_model("textsynth").create_from_arg_string("engine=gptj_6B")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
    ) = textsynth.loglikelihood(LOGLIKELIHOOD_TEST_CASES)

    assert ll_dog > ll_cat
    assert not ig_cat

    assert ig_dog
    assert not ll_max_0
    assert not ll_max_1
    assert not ll_max_2

    # test empty context
    textsynth.loglikelihood([("", "test")])

    (gen,) = textsynth.greedy_until(
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )

    assert gen == " dog"

    print([x[0] for x in vals])

    targets = [
        -17.90513712817,
        -41.83518912287,
        -33.82445643841,
        -2.377361565302,
        -99.53018069754,
        -243.5642283598,
        -528.6862613790,
        -17.90513712817,
        -5.041000672142,
    ]

    for (pred, _), tgt in zip(vals, targets):
        assert pred == pytest.approx(tgt, rel=1e-3)