"official/projects/yolo/README.md" did not exist on "0bfc786cf133781d4e183831e52af1c311100d70"
xnli.py 7.74 KB
Newer Older
bzantium's avatar
bzantium committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
XNLI: Evaluating Cross-lingual Sentence Representations
https://arxiv.org/abs/1809.05053

Based on the implementation of @yongzx (see https://github.com/EleutherAI/lm-evaluation-harness/pull/258)

Prompt format (same as XGLM and mGPT):

sentence1 + ", right? " + mask = (Yes|Also|No) + ", " + sentence2

Predicition is the full sequence with the highest likelihood.

Language specific prompts are translated word-by-word with Google Translate
and may differ from the ones used by mGPT and XGLM (they do not provide their prompts).

Homepage: https://github.com/facebookresearch/XNLI
"""
import numpy as np
from lm_eval.base import rf, Task
from lm_eval.metrics import mean

_CITATIONS = """
@InProceedings{conneau2018xnli,
  author = "Conneau, Alexis
        and Rinott, Ruty
        and Lample, Guillaume
        and Williams, Adina
        and Bowman, Samuel R.
        and Schwenk, Holger
        and Stoyanov, Veselin",
  title = "XNLI: Evaluating Cross-lingual Sentence Representations",
  booktitle = "Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing",
  year = "2018",
  publisher = "Association for Computational Linguistics",
  location = "Brussels, Belgium",
}
"""


class XNLIBase(Task):
    VERSION = 0
    DATASET_PATH = "xnli"
    DATASET_NAME = None

    QUESTION_WORD = None  # 'right'
    ENTAILMENT_LABEL = None  # 'Yes'
    NEUTRAL_LABEL = None  # 'Also'
    CONTRADICTION_LABEL = None  # 'No'

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        return self.dataset["train"]

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return self.dataset["test"]

    def doc_to_text(self, doc):
        # Example:
        # The girl that can help me is all the way across town, right? Yes, The girl I need help from lives a ways away.
        # [MASK] is replaced with ENTAILMENT_LABEL, NEUTRAL_LABEL, or CONTRADICTION_LABEL
        return (
            doc["premise"]
            + ", "
            + self.QUESTION_WORD
            + "? [MASK], "
            + doc["hypothesis"]
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return (
            " "
            + [self.ENTAILMENT_LABEL, self.NEUTRAL_LABEL, self.CONTRADICTION_LABEL][
                doc["label"]
            ]
        )

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        ll_true = rf.loglikelihood_rolling(ctx.replace("[MASK]", self.ENTAILMENT_LABEL))
        ll_neither = rf.loglikelihood_rolling(ctx.replace("[MASK]", self.NEUTRAL_LABEL))
        ll_false = rf.loglikelihood_rolling(
            ctx.replace("[MASK]", self.CONTRADICTION_LABEL)
        )

        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        gold = doc["label"]
        pred = np.argmax(results)
        return {"acc": pred == gold}

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {"acc": mean}

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {"acc": True}


class XNLI_en(XNLIBase):  # English
    DATASET_NAME = "en"

    QUESTION_WORD = "right"
    ENTAILMENT_LABEL = "Yes"
    NEUTRAL_LABEL = "Also"
    CONTRADICTION_LABEL = "No"


class XNLI_de(XNLIBase):  # German
    DATASET_NAME = "de"

    QUESTION_WORD = "richtig"
    ENTAILMENT_LABEL = "Ja"
    NEUTRAL_LABEL = "Auch"
    CONTRADICTION_LABEL = "Nein"


class XNLI_ar(XNLIBase):  # Arabic
    DATASET_NAME = "ar"

    QUESTION_WORD = "صحيح"
    ENTAILMENT_LABEL = "نعم"
    NEUTRAL_LABEL = "لذا"
    CONTRADICTION_LABEL = "رقم"


class XNLI_bg(XNLIBase):  # Bulgarian
    DATASET_NAME = "bg"

    QUESTION_WORD = "правилно"
    ENTAILMENT_LABEL = "да"
    NEUTRAL_LABEL = "така"
    CONTRADICTION_LABEL = "не"


class XNLI_el(XNLIBase):  # Greek
    DATASET_NAME = "el"

    QUESTION_WORD = "σωστός"
    ENTAILMENT_LABEL = "Ναί"
    NEUTRAL_LABEL = "Έτσι"
    CONTRADICTION_LABEL = "όχι"


class XNLI_es(XNLIBase):  # Spanish
    DATASET_NAME = "es"

    QUESTION_WORD = "correcto"
    ENTAILMENT_LABEL = "Sí"
    NEUTRAL_LABEL = "Asi que"
    CONTRADICTION_LABEL = "No"


class XNLI_fr(XNLIBase):  # French
    DATASET_NAME = "fr"

    QUESTION_WORD = "correct"
    ENTAILMENT_LABEL = "Oui"
    NEUTRAL_LABEL = "Aussi"
    CONTRADICTION_LABEL = "Non"


class XNLI_hi(XNLIBase):  # Hindi
    DATASET_NAME = "hi"

    QUESTION_WORD = "सही"
    ENTAILMENT_LABEL = "हाँ"
    NEUTRAL_LABEL = "इसलिए"
    CONTRADICTION_LABEL = "नहीं"


class XNLI_ru(XNLIBase):  # Russian
    DATASET_NAME = "ru"

    QUESTION_WORD = "правильно"
    ENTAILMENT_LABEL = "Да"
    NEUTRAL_LABEL = "Так"
    CONTRADICTION_LABEL = "Нет"


class XNLI_sw(XNLIBase):  # Swahili
    DATASET_NAME = "sw"

    QUESTION_WORD = "sahihi"
    ENTAILMENT_LABEL = "Ndiyo"
    NEUTRAL_LABEL = "Hivyo"
    CONTRADICTION_LABEL = "Hapana"


class XNLI_th(XNLIBase):  # Thai
    DATASET_NAME = "th"

    QUESTION_WORD = "ถูกต้อง"
    ENTAILMENT_LABEL = "ใช่"
    NEUTRAL_LABEL = "ดังนั้น"
    CONTRADICTION_LABEL = "ไม่"


class XNLI_tr(XNLIBase):  # Turkish
    DATASET_NAME = "tr"

    QUESTION_WORD = "doğru"
    ENTAILMENT_LABEL = "Evet"
    NEUTRAL_LABEL = "Böylece"
    CONTRADICTION_LABEL = "Hayır"


class XNLI_ur(XNLIBase):  # Urdu
    DATASET_NAME = "ur"

    QUESTION_WORD = "صحیح"
    ENTAILMENT_LABEL = "جی ہاں"
    NEUTRAL_LABEL = "اس لئے"
    CONTRADICTION_LABEL = "نہیں"


class XNLI_vi(XNLIBase):  # Vietnamese
    DATASET_NAME = "vi"

    QUESTION_WORD = "đúng"
    ENTAILMENT_LABEL = "Vâng"
    NEUTRAL_LABEL = "Vì vậy"
    CONTRADICTION_LABEL = "Không"


class XNLI_zh(XNLIBase):  # Chinese
    DATASET_NAME = "zh"

    QUESTION_WORD = "正确"
    ENTAILMENT_LABEL = "是的"
    NEUTRAL_LABEL = "所以"
    CONTRADICTION_LABEL = "不是的"


LANGS = [
    "ar",
    "bg",
    "de",
    "el",
    "en",
    "es",
    "fr",
    "hi",
    "ru",
    "sw",
    "th",
    "tr",
    "ur",
    "vi",
    "zh",
]

LANG_CLASSES = [
    XNLI_ar,
    XNLI_bg,
    XNLI_de,
    XNLI_el,
    XNLI_en,
    XNLI_es,
    XNLI_fr,
    XNLI_hi,
    XNLI_ru,
    XNLI_sw,
    XNLI_th,
    XNLI_tr,
    XNLI_ur,
    XNLI_vi,
    XNLI_zh,
]


def construct_tasks():
    tasks = {}
    for lang, lang_class in zip(LANGS, LANG_CLASSES):
        tasks[f"xnli_{lang}"] = lang_class
    return tasks