triviaqa.py 6.13 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Custom TriviaQA because HF version sanitizes the dataset differently.
bzantium's avatar
bzantium committed
16
# https://github.com/huggingface/datasets/blob/9977ade72191ff0b6907ec63935448c6269a91a1/datasets/trivia_qa/trivia_qa.py#L285
Jon Tow's avatar
Jon Tow committed
17
"""TriviaQA (Unfiltered Raw) dataset."""
Jonathan Tow's avatar
Jonathan Tow committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


import json
import os

import datasets


_CITATION = """\
@InProceedings{JoshiTriviaQA2017,
    author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
    title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
    booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
    month = {July},
    year = {2017},
    address = {Vancouver, Canada},
    publisher = {Association for Computational Linguistics},
}
"""

_DESCRIPTION = """\
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
"""

_HOMEPAGE = "https://nlp.cs.washington.edu/triviaqa/"

bzantium's avatar
bzantium committed
47
_LICENSE = "Apache License 2.0"
Jonathan Tow's avatar
Jonathan Tow committed
48

bzantium's avatar
bzantium committed
49
_URLS = "https://nlp.cs.washington.edu/triviaqa/data/triviaqa-unfiltered.tar.gz"
Jonathan Tow's avatar
Jonathan Tow committed
50
51


bzantium's avatar
bzantium committed
52
53
class Triviaqa(datasets.GeneratorBasedBuilder):
    """TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples"""
Jonathan Tow's avatar
Jonathan Tow committed
54

bzantium's avatar
bzantium committed
55
    VERSION = datasets.Version("0.0.2")
Jonathan Tow's avatar
Jonathan Tow committed
56
57
58

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
bzantium's avatar
bzantium committed
59
60
            name="triviaqa", version=VERSION, description="The TriviaQA dataset"
        ),
Jonathan Tow's avatar
Jonathan Tow committed
61
62
63
64
65
    ]

    def _info(self):
        features = datasets.Features(
            {
bzantium's avatar
bzantium committed
66
67
                "question_id": datasets.Value("string"),
                "question_source": datasets.Value("string"),
Jonathan Tow's avatar
Jonathan Tow committed
68
69
                "question": datasets.Value("string"),
                "answer": {
bzantium's avatar
bzantium committed
70
                    "aliases": datasets.features.Sequence(
Jonathan Tow's avatar
Jonathan Tow committed
71
72
                        datasets.Value("string"),
                    ),
bzantium's avatar
bzantium committed
73
74
75
76
77
78
79
80
81
82
83
84
                    "value": datasets.Value("string"),
                },
                "search_results": datasets.features.Sequence(
                    {
                        "description": datasets.Value("string"),
                        "filename": datasets.Value("string"),
                        "rank": datasets.Value("int32"),
                        "title": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "search_context": datasets.Value("string"),
                    }
                ),
Jonathan Tow's avatar
Jonathan Tow committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
bzantium's avatar
bzantium committed
103
104
105
                    "filepath": os.path.join(
                        data_dir, "triviaqa-unfiltered", "unfiltered-web-train.json"
                    ),
Jonathan Tow's avatar
Jonathan Tow committed
106
107
108
109
110
111
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
bzantium's avatar
bzantium committed
112
113
114
                    "filepath": os.path.join(
                        data_dir, "triviaqa-unfiltered", "unfiltered-web-dev.json"
                    ),
Jonathan Tow's avatar
Jonathan Tow committed
115
116
117
118
119
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
bzantium's avatar
bzantium committed
120
    def _generate_examples(self, filepath):
Jonathan Tow's avatar
Jonathan Tow committed
121
        with open(filepath, encoding="utf-8") as f:
bzantium's avatar
bzantium committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            json_data = json.load(f)["Data"]
            for key, data in enumerate(json_data):
                search_results = []
                for search_result in data["SearchResults"]:
                    search_results.append(
                        {
                            "description": search_result["Description"]
                            if "Description" in search_result
                            else "",
                            "filename": search_result["Filename"]
                            if "Filename" in search_result
                            else "",
                            "rank": search_result["Rank"]
                            if "Rank" in search_result
                            else -1,
                            "title": search_result["Title"]
                            if "Title" in search_result
                            else "",
                            "url": search_result["Url"]
                            if "Url" in search_result
                            else "",
                            "search_context": search_result["SearchContext"]
                            if "SearchContext" in search_result
                            else "",
                        }
                    )
Jonathan Tow's avatar
Jonathan Tow committed
148
                yield key, {
bzantium's avatar
bzantium committed
149
150
                    "question_id": data["QuestionId"],
                    "question_source": data["QuestionSource"],
Jonathan Tow's avatar
Jonathan Tow committed
151
152
153
                    "question": data["Question"],
                    "answer": {
                        "aliases": data["Answer"]["Aliases"],
Jon Tow's avatar
Jon Tow committed
154
                        "value": data["Answer"]["Value"],
bzantium's avatar
bzantium committed
155
156
                    },
                    "search_results": search_results,
Jonathan Tow's avatar
Jonathan Tow committed
157
                }