sat_analogies.py 4.39 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Jon Tow's avatar
Jon Tow committed
14
"""SAT Analogy Questions dataset."""
Jonathan Tow's avatar
Jonathan Tow committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


import os

import datasets


_CITATION = """\
@article{article,
    author = {Turney, Peter},
    year = {2006},
    month = {09},
    pages = {379-416},
    title = {Similarity of Semantic Relations},
    volume = {32},
    journal = {Computational Linguistics},
    doi = {10.1162/coli.2006.32.3.379}
}
"""

_DESCRIPTION = """\
SAT (Scholastic Aptitude Test) Analogy Questions is a dataset comprising 374
multiple-choice analogy questions; 5 choices per question.
"""

_HOMEPAGE = "https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art)"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""


class SatAnalogies(datasets.GeneratorBasedBuilder):
bzantium's avatar
bzantium committed
47
    """SAT (Scholastic Aptitude Test) Analogy Questions is a dataset comprising 374 multiple-choice analogy questions."""
Jonathan Tow's avatar
Jonathan Tow committed
48
49
50
51

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
bzantium's avatar
bzantium committed
52
53
54
55
56
        datasets.BuilderConfig(
            name="sat_analogies",
            version=VERSION,
            description="The SAT Analogy Questions dataset",
        ),
Jonathan Tow's avatar
Jonathan Tow committed
57
58
59
60
61
62
63
    ]

    @property
    def manual_download_instructions(self):
        return (
            "To use SAT Analogy Questions you have to download it manually. Please "
            "email Peter Turney to request the data (https://www.apperceptual.com). "
bzantium's avatar
bzantium committed
64
            "Once you receive a download link for the dataset, supply the local path "
Jonathan Tow's avatar
Jonathan Tow committed
65
66
67
68
69
70
71
72
73
            "as the `data_dir` arg: "
            "`datasets.load_dataset('sat_analogies', data_dir='path/to/folder/folder_name')`"
        )

    def _info(self):
        features = datasets.Features(
            {
                "source": datasets.Value("string"),
                "stem": datasets.Value("string"),
bzantium's avatar
bzantium committed
74
                "choices": datasets.features.Sequence(datasets.Value("string")),
Jonathan Tow's avatar
Jonathan Tow committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                "solution": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
        if not os.path.exists(data_dir):
            raise FileNotFoundError(
                f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('matinf', data_dir=...)` that includes SAT-package-V3.txt. Manual download instructions: {self.manual_download_instructions}"
            )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "SAT-package-V3.txt"),
                },
            )
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath):
        data = []
        with open(filepath, "r", encoding="utf-8") as f:
            record = []
            for line in f:
                line = line.strip()
                if len(line) == 0 and record:
                    data.append(record)
                    record = []
bzantium's avatar
bzantium committed
112
                elif len(line) > 0 and line[0] == "#":
Jonathan Tow's avatar
Jonathan Tow committed
113
114
115
116
117
118
119
120
121
122
123
                    # Skip comments.
                    continue
                else:
                    record.append(line)
            data.append(record)
        for key, record in enumerate(data):
            source = record[-8]
            stem = record[-7]
            choices = record[-6:-1]
            solution = record[-1]
            yield key, {
bzantium's avatar
bzantium committed
124
125
126
127
                "source": source,
                "stem": stem,
                "choices": choices,
                "solution": solution,
Jonathan Tow's avatar
Jonathan Tow committed
128
            }