logiqa.py 4.4 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""


import datasets


_CITATION = """\
@misc{liu2020logiqa,
bzantium's avatar
bzantium committed
22
    title={LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning},
Jonathan Tow's avatar
Jonathan Tow committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    author={Jian Liu and Leyang Cui and Hanmeng Liu and Dandan Huang and Yile Wang and Yue Zhang},
    year={2020},
    eprint={2007.08124},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
LogiQA is a dataset for testing human logical reasoning. It consists of 8,678 QA
instances, covering multiple types of deductive reasoning. Results show that state-
of-the-art neural models perform by far worse than human ceiling. The dataset can
also serve as a benchmark for reinvestigating logical AI under the deep learning
NLP setting.
"""

_HOMEPAGE = "https://github.com/lgw863/LogiQA-dataset"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "train": "https://raw.githubusercontent.com/lgw863/LogiQA-dataset/master/Train.txt",
    "validation": "https://raw.githubusercontent.com/lgw863/LogiQA-dataset/master/Eval.txt",
    "test": "https://raw.githubusercontent.com/lgw863/LogiQA-dataset/master/Test.txt",
}


class Logiqa(datasets.GeneratorBasedBuilder):
    """LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning"""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
bzantium's avatar
bzantium committed
57
58
59
        datasets.BuilderConfig(
            name="logiqa", version=VERSION, description="The LogiQA dataset."
        ),
Jonathan Tow's avatar
Jonathan Tow committed
60
61
62
63
64
65
66
67
    ]

    def _info(self):
        features = datasets.Features(
            {
                "label": datasets.Value("string"),
                "context": datasets.Value("string"),
                "question": datasets.Value("string"),
bzantium's avatar
bzantium committed
68
                "options": datasets.features.Sequence(datasets.Value("string")),
Jonathan Tow's avatar
Jonathan Tow committed
69
70
71
72
73
74
75
76
77
78
79
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
bzantium's avatar
bzantium committed
80
81
82
83
84
        urls = {
            "train": _URLS["train"],
            "test": _URLS["test"],
            "validation": _URLS["validation"],
        }
Jonathan Tow's avatar
Jonathan Tow committed
85
86
87
88
89
90
91
92
93
94
95
96
97
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
bzantium's avatar
bzantium committed
98
                gen_kwargs={"filepath": data_dir["test"], "split": "test"},
Jonathan Tow's avatar
Jonathan Tow committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "validation",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        def normalize(text):
            return text.replace(".", ". ").strip()
bzantium's avatar
bzantium committed
114

Jonathan Tow's avatar
Jonathan Tow committed
115
116
117
118
119
120
121
122
123
124
        with open(filepath, encoding="utf-8") as f:
            data = f.read().strip().split("\n\n")
            for key, row in enumerate(data):
                example = row.split("\n")
                yield key, {
                    "label": example[0].strip(),
                    "context": normalize(example[1]),
                    "question": normalize(example[2]),
                    "options": [normalize(option[2:]) for option in example[3:]],
                }