drop.py 7.29 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
bzantium's avatar
bzantium committed
15
# Custom DROP dataset that, unlike HF, keeps all question-answer pairs
Jonathan Tow's avatar
Jonathan Tow committed
16
17
18
19
20
21
22
23
24
25
26
27
# even if there are multiple types of answers for the same question.
"""DROP dataset."""


import json
import os

import datasets


_CITATION = """\
@misc{dua2019drop,
bzantium's avatar
bzantium committed
28
    title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
Jonathan Tow's avatar
Jonathan Tow committed
29
30
31
32
33
34
35
36
37
    author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
    year={2019},
    eprint={1903.00161},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
bzantium's avatar
bzantium committed
38
39
DROP is a QA dataset which tests comprehensive understanding of paragraphs. In
this crowdsourced, adversarially-created, 96k question-answering benchmark, a
Jonathan Tow's avatar
Jonathan Tow committed
40
41
42
43
44
45
46
47
48
49
50
51
52
system must resolve multiple references in a question, map them onto a paragraph,
and perform discrete operations over them (such as addition, counting, or sorting).
"""

_HOMEPAGE = "https://allenai.org/data/drop"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "drop": "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip",
}

bzantium's avatar
bzantium committed
53
54
55
56
57
58
59
60
61
62
63
64
65
_EMPTY_VALIDATED_ANSWER = [
    {
        "number": "",
        "date": {
            "day": "",
            "month": "",
            "year": "",
        },
        "spans": [],
        "worker_id": "",
        "hit_id": "",
    }
]
Jonathan Tow's avatar
Jonathan Tow committed
66
67
68
69
70
71
72
73


class Drop(datasets.GeneratorBasedBuilder):
    """DROP is a QA dataset which tests comprehensive understanding of paragraphs."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
bzantium's avatar
bzantium committed
74
75
76
        datasets.BuilderConfig(
            name="drop", version=VERSION, description="The DROP dataset."
        ),
Jonathan Tow's avatar
Jonathan Tow committed
77
78
79
    ]

    def _info(self):
bzantium's avatar
bzantium committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        features = datasets.Features(
            {
                "section_id": datasets.Value("string"),
                "passage": datasets.Value("string"),
                "question": datasets.Value("string"),
                "query_id": datasets.Value("string"),
                "answer": {
                    "number": datasets.Value("string"),
                    "date": {
                        "day": datasets.Value("string"),
                        "month": datasets.Value("string"),
                        "year": datasets.Value("string"),
                    },
                    "spans": datasets.features.Sequence(datasets.Value("string")),
                    "worker_id": datasets.Value("string"),
                    "hit_id": datasets.Value("string"),
Jonathan Tow's avatar
Jonathan Tow committed
96
                },
bzantium's avatar
bzantium committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                "validated_answers": datasets.features.Sequence(
                    {
                        "number": datasets.Value("string"),
                        "date": {
                            "day": datasets.Value("string"),
                            "month": datasets.Value("string"),
                            "year": datasets.Value("string"),
                        },
                        "spans": datasets.features.Sequence(datasets.Value("string")),
                        "worker_id": datasets.Value("string"),
                        "hit_id": datasets.Value("string"),
                    }
                ),
            }
        )
Jonathan Tow's avatar
Jonathan Tow committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
bzantium's avatar
bzantium committed
128
129
130
                    "filepath": os.path.join(
                        data_dir, "drop_dataset", "drop_dataset_train.json"
                    ),
Jonathan Tow's avatar
Jonathan Tow committed
131
132
133
134
135
136
137
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
bzantium's avatar
bzantium committed
138
139
140
                    "filepath": os.path.join(
                        data_dir, "drop_dataset", "drop_dataset_dev.json"
                    ),
Jonathan Tow's avatar
Jonathan Tow committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                    "split": "validation",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            key = 0
            for section_id, example in data.items():
                # Each example (passage) has multiple sub-question-answer pairs.
                for qa in example["qa_pairs"]:
                    # Build answer.
                    answer = qa["answer"]
                    answer = {
                        "number": answer["number"],
                        "date": {
                            "day": answer["date"].get("day", ""),
                            "month": answer["date"].get("month", ""),
                            "year": answer["date"].get("year", ""),
                        },
                        "spans": answer["spans"],
                        "worker_id": answer.get("worker_id", ""),
                        "hit_id": answer.get("hit_id", ""),
                    }
                    validated_answers = []
                    if "validated_answers" in qa:
                        for validated_answer in qa["validated_answers"]:
                            va = {
                                "number": validated_answer.get("number", ""),
                                "date": {
                                    "day": validated_answer["date"].get("day", ""),
                                    "month": validated_answer["date"].get("month", ""),
                                    "year": validated_answer["date"].get("year", ""),
                                },
                                "spans": validated_answer.get("spans", ""),
                                "worker_id": validated_answer.get("worker_id", ""),
                                "hit_id": validated_answer.get("hit_id", ""),
                            }
                            validated_answers.append(va)
                    else:
                        validated_answers = _EMPTY_VALIDATED_ANSWER
                    yield key, {
                        "section_id": section_id,
                        "passage": example["passage"],
                        "question": qa["question"],
                        "query_id": qa["query_id"],
                        "answer": answer,
                        "validated_answers": validated_answers,
                    }
                    key += 1