"sgl-router/src/routers/grpc/regular/responses/tool_loop.rs" did not exist on "212f5e482242a88c7e697ad3c9b7e8084e3eb7e0"
vllm_causallms.py 15.5 KB
Newer Older
1
2
3
4
5
6
import copy
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

from tqdm import tqdm

baberabb's avatar
baberabb committed
7
from lm_eval.api.instance import Instance
8
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
9
from lm_eval.api.registry import register_model
10
from lm_eval.models.utils import Collator, divide
11
12
13
14
15
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
16

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
17

18
try:
19
    import ray
baberabb's avatar
baberabb committed
20
    from ray.util.multiprocessing import Pool
21
    from vllm import LLM, SamplingParams
baberabb's avatar
baberabb committed
22
    from vllm.transformers_utils.tokenizer import get_tokenizer
23
24
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
25

26
eval_logger = eval_logger
baberabb's avatar
baberabb committed
27

baberabb's avatar
baberabb committed
28

baberabb's avatar
baberabb committed
29
# adapted from https://github.com/vllm-project/vllm/issues/367#issuecomment-1788341727
30
31
32
def run_inference_one_model(
    model_args: dict, sampling_params, requests: List[List[int]]
):
baberabb's avatar
baberabb committed
33
34
35
36
    llm = LLM(**model_args)
    return llm.generate(prompt_token_ids=requests, sampling_params=sampling_params)


baberabb's avatar
baberabb committed
37
@register_model("vllm")
38
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
39
40
41
42
43
44
45
46
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
47
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
48
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
49
        tokenizer_revision: Optional[str] = None,
baberabb's avatar
baberabb committed
50
        tensor_parallel_size: int = 1,
51
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
52
53
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
54
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
55
        max_batch_size=None,
baberabb's avatar
baberabb committed
56
        max_length: int = None,
57
        max_model_len: int = None,
baberabb's avatar
baberabb committed
58
        seed: int = 1234,
59
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
60
        device: str = "cuda",
61
        data_parallel_size: int = 1,
baberabb's avatar
baberabb committed
62
63
    ):
        super().__init__()
64

65
        if not find_spec("vllm"):
66
            raise Exception(
67
68
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
69
70
            )

baberabb's avatar
baberabb committed
71
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
72
73
74
75
76
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
77
        self.tensor_parallel_size = int(tensor_parallel_size)
78
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
79
80
81
82
83
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
84
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
85
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
86
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
87
88
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
89
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
90
91
92
93
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
94
95
96
97
98
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
99
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
100
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
101
102
        else:
            self.model_args["worker_use_ray"] = True
103
104
105
106
107
108
109
110
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
111
112
113
114
115
116
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
117

baberabb's avatar
baberabb committed
118
119
120
121
122
123
124
125
126
127
128
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
129
130
131
132
133
134
135
136
137
138
139
140
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
141
142
143
144
145

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
146
147
148
149
150
151
152
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
        add_special_tokens=False,
        truncation=False,
    ):
baberabb's avatar
baberabb committed
153
        """ """
baberabb's avatar
baberabb committed
154
155
156
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
157
158
159
160
161
162
163
164
165

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
166
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
167
168
169
170
171
172
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
173
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
174
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
175
        else:
baberabb's avatar
baberabb committed
176
            sampling_params = SamplingParams(
177
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
178
            )
179
        if self.data_parallel_size > 1:
180
            requests = [list(x) for x in divide(requests, self.data_parallel_size)]
baberabb's avatar
baberabb committed
181
            inputs = [(self.model_args, sampling_params, req) for req in requests]
baberabb's avatar
baberabb committed
182

183
            with Pool(self.data_parallel_size) as pool:
baberabb's avatar
baberabb committed
184
                results = pool.starmap(run_inference_one_model, inputs)
185
186
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
187
188
189
190
191
192
            # flatten results
            return [item for sublist in results for item in sublist]

        outputs = self.model.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
193
            use_tqdm=True if self.batch_size == "auto" else False,
baberabb's avatar
baberabb committed
194
        )
baberabb's avatar
baberabb committed
195
196
        return outputs

baberabb's avatar
baberabb committed
197
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
baberabb's avatar
baberabb committed
198
199
200
201
202
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
203
204
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
205
206
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
207
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

    def generate_until(self, requests: List[Instance]) -> List[str]:
227
        res = []
baberabb's avatar
baberabb committed
228
229
230

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
231
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
232
233
234
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
235
236
237
238
239
240
241
242

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
243
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
244
245
246
247

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
248
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
249
250
251
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
252
253
254

        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        # for each different set of kwargs, we execute all requests, by batch.
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
276
                )
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            if not until:
                until = [self.tokenizer.decode(self.eot_token_id)]
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
297

298
299
300
301
302
303
304
305
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
306
307

        pbar.close()
308
309
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
310
311

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
312
313
314
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
315
316
317
318
319
320
321
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

322
323
324
325
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
326
        )
327

baberabb's avatar
baberabb committed
328
        pbar = tqdm(total=len(requests), disable=disable_tqdm)
baberabb's avatar
baberabb committed
329
        for chunk in chunks:
330
            inputs = []
baberabb's avatar
baberabb committed
331
332
333
334
335
336
337
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

338
                inputs.append(inp)
baberabb's avatar
baberabb committed
339
340
                ctxlens.append(ctxlen)

341
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
342

343
344
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
345
346
            ):
                answer = self._parse_logprobs(
347
348
349
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
350
351
352
353
354
355
356
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
357
                pbar.update(1)
baberabb's avatar
baberabb committed
358
359
360
361
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
362
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
363
364
365
        """Process logprobs and tokens.

        :param tokens: list
366
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
367
        :param outputs: RequestOutput
368
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
369
370
371
372
373
374
375
376
377
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

378
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
379
380
        continuation_logprobs_dicts = outputs.prompt_logprobs

baberabb's avatar
baberabb committed
381
        # Calculate continuation_logprobs
382
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
383
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
384
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
385
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
386
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
387
388
389
390
391
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
392
393
394
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
395
396
397
398
399
400
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
401
402

        return continuation_logprobs, is_greedy
403
404
405
406

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
407
408
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
409
410
411
412
413
414
415
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs