coqa.py 3.21 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

3
4
import json
import random
5
from lm_eval.base import Task
sdtblck's avatar
sdtblck committed
6
from ..utils import sh
Jason Phang's avatar
gpt3  
Jason Phang committed
7

8

9
class CoQA(Task):
10
11
    def __init__(self):
        self.download()
sdtblck's avatar
sdtblck committed
12
    def download(self):
13
        #TODO: don't download if files already there
sdtblck's avatar
sdtblck committed
14
15
16
17
18
19
        sh("""
            mkdir -p data/coqa 
            wget http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-train-v1.0.json -O data/coqa/coqa-train-v1.0.json
            wget http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-dev-v1.0.json -O data/coqa/coqa-dev-v1.0.json
            """)

20
21
22
23
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
Anish Thite's avatar
Anish Thite committed
24
        return True
Jason Phang's avatar
Jason Phang committed
25
26
27
28

    def has_test_docs(self):
        return False

29
    def training_docs(self):
30
        return json.load(open('data/coqa/coqa-train-v1.0.json'))['data']
31
32

    def validation_docs(self):
Anish Thite's avatar
Anish Thite committed
33
        return  json.load(open('data/coqa/coqa-dev-v1.0.json'))['data']  
34
35

    def test_docs(self):
Leo Gao's avatar
Leo Gao committed
36
        pass
37
38
    
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
39
40
        # TODO: figure out description
        return ""
41
    
Leo Gao's avatar
Leo Gao committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    def doc_to_text(self, doc):
        # TODO: implement.
        raise NotImplementedError('doc_to_text not implemented')

    def doc_to_target(self, doc):
        # TODO: implement.
        raise NotImplementedError('doc_to_target not implemented')

    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')