drop.py 2.66 KB
Newer Older
Anish Thite's avatar
Anish Thite committed
1
2
3
4
5
import numpy as np
import json
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
6
from . common import HFTask, simple_accuracy_metric, yesno
Anish Thite's avatar
Anish Thite committed
7
8
9
10
11
12
from pathlib import Path
from ..base import Dataset

class DROP(Dataset):
    DATAFOLDER = Path(__file__).parent / "../../data/drop"
    
13
14
15
    def __init__(self):
        self.download()

Anish Thite's avatar
Anish Thite committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    def has_training_docs(self):
        """Whether the task has a training set"""
        return True
    
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        return True

    def has_test_docs(self):
        """Whether the task has a test set"""
        return False

    def training_docs(self):
        docs = json.load(open(self.DATAFOLDER / 'drop_dataset_train.json'))
        return [docs[k] for k in docs.keys()]


    def validation_docs(self):
        docs = json.load(open(self.DATAFOLDER / 'drop_dataset_dev.json'))
        return [docs[k] for k in docs.keys()]
    
    def test_docs(self):
        pass
    
    def doc_to_text(self, doc, include_target=True):
41
        doctext = "Passage: {}\n".format(doc["passage"])
Anish Thite's avatar
Anish Thite committed
42
43
        qa_texts = []
        for pair in doc["qa_pairs"]:
44
            text = ''.join(['Question: ', pair['question'],'\nAnswer: '])
Anish Thite's avatar
Anish Thite committed
45
46
47
48
49
50
51
52
53
54
55
56
57
            if include_target:
                def get_answer(ans_dict):
                    if ans_dict['number'] != '':
                        return ans_dict['number']
                    if ans_dict['spans'] != []:
                        if len(ans_dict['spans']) > 0:
                            return ', '.join(ans_dict['spans'])
                        return ans_dict['spans'][0]
                    return ' '.join([ans_dict['date']['day'], 
                                     ans_dict['date']['month'], 
                                     ans_dict['date']['year']]).strip() 
                text = ''.join([text, get_answer(pair['answer'])])
            qa_texts.append(text)
58
        return ''.join([doctext, '\n'.join(qa_texts)])
Anish Thite's avatar
Anish Thite committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
            
    
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        """Take iterable of docs and evaluates, returning a dict with the following format:

        {
            "major": float,
            "minor": dict,
            "higher_is_better": bool,
        }

        * `major` should be a single, representative number, for programmatic comparison
        * `minor` should be a dictionary containing all relevant sub-metrics
        * `higher_is_better` determines whether a higher metric is better
        """
        pass

    def fewshot_description(self):
        return "Read the passage and answer the questions "