README.md 2.48 KB
Newer Older
Shivansh Pachnanda's avatar
Shivansh Pachnanda committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# MLQA

### Paper

Title: `MLQA: Evaluating Cross-lingual Extractive Question Answering`

Abstract: `https://arxiv.org/abs/1910.07475`

MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average

Homepage: `https://github.com/facebookresearch/MLQA`


### Citation

```
@misc{lewis2020mlqaevaluatingcrosslingualextractive,
      title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
      author={Patrick Lewis and Barlas Oğuz and Ruty Rinott and Sebastian Riedel and Holger Schwenk},
      year={2020},
      eprint={1910.07475},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/1910.07475},
}
```

### Groups, Tags, and Tasks

#### Groups

* Not part of a group yet

#### Tasks

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Tasks of the form `mlqa_context-lang_question-lang`
* `mlqa_ar_ar`
* `mlqa_ar_de`
* `mlqa_ar_vi`
* `mlqa_ar_zh`
* `mlqa_ar_en`
* `mlqa_ar_es`
* `mlqa_ar_hi`
* `mlqa_de_ar`
* `mlqa_de_de`
* `mlqa_de_vi`
* `mlqa_de_zh`
* `mlqa_de_en`
* `mlqa_de_es`
* `mlqa_de_hi`
* `mlqa_vi_ar`
* `mlqa_vi_de`
* `mlqa_vi_vi`
* `mlqa_vi_zh`
* `mlqa_vi_en`
* `mlqa_vi_es`
* `mlqa_vi_hi`
* `mlqa_zh_ar`
* `mlqa_zh_de`
* `mlqa_zh_vi`
* `mlqa_zh_zh`
* `mlqa_zh_en`
* `mlqa_zh_es`
* `mlqa_zh_hi`
* `mlqa_en_ar`
* `mlqa_en_de`
* `mlqa_en_vi`
* `mlqa_en_zh`
* `mlqa_en_en`
* `mlqa_en_es`
* `mlqa_en_hi`
* `mlqa_es_ar`
* `mlqa_es_de`
* `mlqa_es_vi`
* `mlqa_es_zh`
* `mlqa_es_en`
* `mlqa_es_es`
* `mlqa_es_hi`
* `mlqa_hi_ar`
* `mlqa_hi_de`
* `mlqa_hi_vi`
* `mlqa_hi_zh`
* `mlqa_hi_en`
* `mlqa_hi_es`
* `mlqa_hi_hi`
Shivansh Pachnanda's avatar
Shivansh Pachnanda committed
89
90
91
92
93
94
95
96
97
98
99
100
101

### Checklist

For adding novel benchmarks/datasets to the library:
* [x] Is the task an existing benchmark in the literature?
  * [x] Have you referenced the original paper that introduced the task?
  * [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?


If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?