metrics.py 9.29 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import logging
&'s avatar
& committed
2
import math
lintangsutawika's avatar
lintangsutawika committed
3
import random
4
5
from collections.abc import Iterable

lintangsutawika's avatar
lintangsutawika committed
6
import evaluate
7
8
9
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
10

11
from lm_eval.api.registry import register_metric, register_aggregation
12

lintangsutawika's avatar
lintangsutawika committed
13

14
eval_logger = logging.getLogger("lm-eval")
15

16

17
@register_aggregation("mean")
18
19
20
21
def mean(arr):
    return sum(arr) / len(arr)


22
@register_aggregation("median")
23
24
25
26
def median(arr):
    return arr[len(arr) // 2]


27
@register_aggregation("weighted_mean")
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
32
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


33
34
35
36
37
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
)
lintangsutawika's avatar
lintangsutawika committed
38
39
def perplexity(items):
    return math.exp(-mean(items))
40

lintangsutawika's avatar
lintangsutawika committed
41
42
43
44
45
46
47
48

@register_metric(
    metric=["word_perplexity", "byte_perplexity"],
    higher_is_better=False,
    output_type="loglikelihood_rolling",
)
def weighted_perplexity(items):  # This is a passthrough function
    return math.exp(-weighted_mean(items))
49
50


51
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
52
53
54
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
55
)
lintangsutawika's avatar
lintangsutawika committed
56
57
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)
58
59


lintangsutawika's avatar
lintangsutawika committed
60
61
62
63
64
@register_metric(
    metric="f1",
    higher_is_better=True,
    output_type="multiple_choice",
)
haileyschoelkopf's avatar
haileyschoelkopf committed
65
66
67
68
69
70
71
72
73
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


lintangsutawika's avatar
lintangsutawika committed
74
75
76
77
78
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
)
haileyschoelkopf's avatar
haileyschoelkopf committed
79
80
81
82
83
84
85
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


lintangsutawika's avatar
lintangsutawika committed
86
87
88
89
90
@register_metric(
    metric="bleu",
    higher_is_better=True,
    output_type="generate_until",
)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
108
109
110
111
112
@register_metric(
    metric="chrf",
    higher_is_better=True,
    output_type="generate_until",
)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
127
128
129
130
131
@register_metric(
    metric="ter",
    higher_is_better=True,
    output_type="generate_until",
)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


147
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
148
149
150
    metric=["acc", "acc_norm"],
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
151
)
lintangsutawika's avatar
lintangsutawika committed
152
153
def aggregate_acc_fn(items):
    return mean(items)
154
155
156


@register_metric(
lintangsutawika's avatar
lintangsutawika committed
157
158
159
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
160
)
lintangsutawika's avatar
lintangsutawika committed
161
162
163
def acc_mutual_info_fn(items):
    return mean(items)

164

165
exact_match = evaluate.load("exact_match")
166

167

168
@register_metric(
lintangsutawika's avatar
lintangsutawika committed
169
170
171
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
172
)
173
def hf_evaluate_fn(**kwargs):
lintangsutawika's avatar
lintangsutawika committed
174
    return exact_match.compute(**kwargs)
175

&'s avatar
& committed
176

Leo Gao's avatar
Leo Gao committed
177
def pop_stddev(arr):
178
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
179
180
181
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
182
def sample_stddev(arr):
183
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
184
185
186
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
187
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
188
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
189
190


lintangsutawika's avatar
lintangsutawika committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc
213
214


Leo Gao's avatar
Leo Gao committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
232
233
234
235
236
237
238
239
240
241

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
277
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
278
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
279
280
        self.f = f
        self.n = n
281

Leo Gao's avatar
Leo Gao committed
282
283
284
285
286
287
288
289
290
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
291

292
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
293
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
294

Leo Gao's avatar
Leo Gao committed
295
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
296
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
297
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
298
299
300
301
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
302
    res = []
303
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
304
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
305

Leo Gao's avatar
Leo Gao committed
306
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
307
308
    for bootstrap in tqdm(
        pool.imap(
309
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
310
311
312
313
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
314
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
315
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
316

Leo Gao's avatar
Leo Gao committed
317
    pool.close()
Leo Gao's avatar
Leo Gao committed
318
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
319
320


321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)