base.py 5.28 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import abc
import random
Leo Gao's avatar
Leo Gao committed
3
import collections
Leo Gao's avatar
Leo Gao committed
4

Jason Phang's avatar
gpt3  
Jason Phang committed
5

Leo Gao's avatar
Leo Gao committed
6
7
class LM(abc.ABC):
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
8
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
9
10
11
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
12

Leo Gao's avatar
Leo Gao committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
        :param requests: list
            A list of pairs (context, continuation)
            context: str
                Context string
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `contination`
            isgreedy:
                Whether `contination` would be generated by greedy sampling from `context`
        """
        pass

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
31
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
32
33
34
35
36
37
38
39
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
            until: str
                The string sequence to generate until. This string sequence may 
Leo Gao's avatar
Leo Gao committed
40
                span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
41
42
43
44
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
45
        """
Leo Gao's avatar
Leo Gao committed
46
47
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
48
49
50
51
52
53
54
55
56
57
58
    @classmethod
    def create_from_arg_string(cls, arg_string):
        """Constructor method, in case models need additional arguments
        e.g. OpenAI API engine, paths for loading, other params

        :param arg_string: str
            Left up to individual model class to handle

        """
        return cls()

Leo Gao's avatar
Leo Gao committed
59
60

class Dataset(abc.ABC):
Leo Gao's avatar
Leo Gao committed
61
62
63
    @abc.abstractmethod
    def __init__(self):
        self.download()
Leo Gao's avatar
Leo Gao committed
64
        self._traindocs = None
sdtblck's avatar
sdtblck committed
65
66
67
68
69

    def download(self):
        """Downloads the task dataset if necessary"""
        pass

70
71
    @abc.abstractmethod
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
72
        """Whether the task has a training set"""
73
74
75
76
        pass
    
    @abc.abstractmethod
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
77
78
79
80
81
82
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
83
84
        pass

Leo Gao's avatar
Leo Gao committed
85
86
    @abc.abstractmethod
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
87
88
89
90
91
        """

        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
92
93
94
95
96
97
98
99
100
101
102
        pass
    
    @abc.abstractmethod
    def validation_docs(self):
        pass
    
    @abc.abstractmethod
    def test_docs(self):
        pass
    
    def fewshot_examples(self, k):
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        if self._traindocs is None:
            self._traindocs = list(self.training_docs())

        return random.sample(self._traindocs, k)
Leo Gao's avatar
Leo Gao committed
107
108

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
109
110
111
112
113
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
114
        pass
Leo Gao's avatar
Leo Gao committed
115
116

    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
117
118
119
120
121
122
123
    def construct_requests(self, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param ctx: str
            The context string, generated by fewshot_context.
        """
Leo Gao's avatar
Leo Gao committed
124
        pass
Leo Gao's avatar
Leo Gao committed
125
126
    
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
127
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
128
129
        """Take a single document and the LM results and evaluates, returning a 
        list of dicts, each with the following format:
Jason Phang's avatar
checkin  
Jason Phang committed
130
131

        {
Leo Gao's avatar
Leo Gao committed
132
133
            "submetric": str,
            "value": float,
Jason Phang's avatar
checkin  
Jason Phang committed
134
            "higher_is_better": bool,
Leo Gao's avatar
Update  
Leo Gao committed
135
            "aggregation": ([float] -> float),
Jason Phang's avatar
checkin  
Jason Phang committed
136
137
        }

Leo Gao's avatar
Leo Gao committed
138
139
        * `submetric` should be the name of the metric
        * `value` should be the value of the metric
Jason Phang's avatar
checkin  
Jason Phang committed
140
        * `higher_is_better` determines whether a higher metric is better
Leo Gao's avatar
Leo Gao committed
141
142
143
144
        * `aggregation` should be a function that takes a list of floats and 
            aggregates them into one float. This should be the same for all 
            submetrics of the same name; if it differs, an error should be 
            raised.
Leo Gao's avatar
Leo Gao committed
145
146
147
148
149

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
150
        """
Leo Gao's avatar
Leo Gao committed
151
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
152

Jason Phang's avatar
Jason Phang committed
153
    def fewshot_description(self):
Jason Phang's avatar
checkin  
Jason Phang committed
154
155
        return ""

Jason Phang's avatar
Jason Phang committed
156
    def fewshot_context(self, doc, num_fewshot, provide_description):
Jason Phang's avatar
Jason Phang committed
157
        raw_description = self.fewshot_description()
Jason Phang's avatar
Jason Phang committed
158
        description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
Leo Gao's avatar
Update  
Leo Gao committed
159
        
Jason Phang's avatar
Jason Phang committed
160
        labeled_examples = "\n\n".join(
Leo Gao's avatar
Update  
Leo Gao committed
161
            [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in self.fewshot_examples(k=num_fewshot)]
Jason Phang's avatar
Jason Phang committed
162
        ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
163
164

        example = self.doc_to_text(doc).strip()
Leo Gao's avatar
Leo Gao committed
165
166
167
168
169
170
171
172
173
174
175
        return description + labeled_examples + example



def mean(arr):
    return sum(arr) / len(arr)

def median(arr):
    return arr[len(arr) // 2]


Leo Gao's avatar
Update  
Leo Gao committed
176
Request = collections.namedtuple('Request', ('type', 'args'))
Leo Gao's avatar
Leo Gao committed
177
178
179

class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
180
181
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
182
183
184
185
        return fn


rf = RequestFactory()