utils.py 3.93 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import json
import os

import numpy as np
from metrics import (
    classification_score,
    code_sim_score,
    count_score,
    qa_f1_score,
    qa_f1_zh_score,
    retrieval_score,
    retrieval_zh_score,
    rouge_score,
    rouge_zh_score,
)


dataset2metric = {
    "narrativeqa": qa_f1_score,
    "qasper": qa_f1_score,
    "multifieldqa_en": qa_f1_score,
    "multifieldqa_zh": qa_f1_zh_score,
    "hotpotqa": qa_f1_score,
    "2wikimqa": qa_f1_score,
    "musique": qa_f1_score,
    "dureader": rouge_zh_score,
    "gov_report": rouge_score,
    "qmsum": rouge_score,
    "multi_news": rouge_score,
    "vcsum": rouge_zh_score,
    "trec": classification_score,
    "triviaqa": qa_f1_score,
    "samsum": rouge_score,
    "lsht": classification_score,
    "passage_retrieval_en": retrieval_score,
    "passage_count": count_score,
    "passage_retrieval_zh": retrieval_zh_score,
    "lcc": code_sim_score,
    "repobench-p": code_sim_score,
}

# def parse_args(args=None):
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--model', type=str, default=None)
#     parser.add_argument('--e', action='store_true', help="Evaluate on LongBench-E")
#     return parser.parse_args(args)


def scorer_e(dataset, predictions, answers, lengths, all_classes):
    scores = {"0-4k": [], "4-8k": [], "8k+": []}
    for prediction, ground_truths, length in zip(predictions, answers, lengths):
        score = 0.0
        if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
            prediction = prediction.lstrip("\n").split("\n")[0]
        for ground_truth in ground_truths:
            score = max(
                score,
                dataset2metric[dataset](
                    prediction, ground_truth, all_classes=all_classes
                ),
            )
        if length < 4000:
            scores["0-4k"].append(score)
        elif length < 8000:
            scores["4-8k"].append(score)
        else:
            scores["8k+"].append(score)
    for key in scores.keys():
        scores[key] = round(100 * np.mean(scores[key]), 2)
    return scores


def scorer(dataset, predictions, answers, all_classes):
    total_score = 0.0
    for prediction, ground_truths in zip(predictions, answers):
        score = 0.0
        if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
            prediction = prediction.lstrip("\n").split("\n")[0]
        for ground_truth in ground_truths:
            score = max(
                score,
                dataset2metric[dataset](
                    prediction, ground_truth, all_classes=all_classes
                ),
            )
        total_score += score
    return round(100 * total_score / len(predictions), 2)


# if __name__ == '__main__':
#     args = parse_args()
#     scores = dict()
#     if args.e:
#         path = f"pred_e/{args.model}/"
#     else:
#         path = f"pred/{args.model}/"
#     all_files = os.listdir(path)
#     print("Evaluating on:", all_files)
#     for filename in all_files:
#         if not filename.endswith("jsonl"):
#             continue
#         predictions, answers, lengths = [], [], []
#         dataset = filename.split('.')[0]
#         with open(f"{path}{filename}", "r", encoding="utf-8") as f:
#             for line in f:
#                 data = json.loads(line)
#                 predictions.append(data["pred"])
#                 answers.append(data["answers"])
#                 all_classes = data["all_classes"]
#                 if "length" in data:
#                     lengths.append(data["length"])
#         if args.e:
#             score = scorer_e(dataset, predictions, answers, lengths, all_classes)
#         else:
#             score = scorer(dataset, predictions, answers, all_classes)
#         scores[dataset] = score
#     if args.e:
#         out_path = f"pred_e/{args.model}/result.json"
#     else:
#         out_path = f"pred/{args.model}/result.json"
#     with open(out_path, "w") as f:
#         json.dump(scores, f, ensure_ascii=False, indent=4)