huggingface.py 56.9 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import torch
8
import torch.nn.functional as F
9
import transformers
Jeevan's avatar
Jeevan committed
10
11
12
13
14
15
from accelerate import (
    Accelerator,
    DistributedType,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
16
from huggingface_hub import HfApi
17
18
19
20
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
21
22
23
24
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
25
26

from lm_eval import utils
baberabb's avatar
baberabb committed
27
from lm_eval.api.instance import Instance
28
from lm_eval.api.model import TemplateLM
29
from lm_eval.api.registry import register_model
30
31
32
33
34
35
36
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
    get_dtype,
    pad_and_concat,
    stop_sequences_criteria,
)
37

38

39
eval_logger = utils.eval_logger
40

Nathan Habib's avatar
cleanup  
Nathan Habib committed
41

Nathan Habib's avatar
cleanup  
Nathan Habib committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def _get_accelerate_args(
    device_map_option: Optional[str] = "auto",
    max_memory_per_gpu: Optional[Union[int, str]] = None,
    max_cpu_memory: Optional[Union[int, str]] = None,
    offload_folder: Optional[str] = "./offload",
    gpus: Optional[int] = None,
) -> dict:
    """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
    max_memory = {}
    if max_memory_per_gpu is not None:
        max_memory_per_gpu_map = {
            device_idx: max_memory_per_gpu for device_idx in range(gpus)
        }
        max_memory.update(max_memory_per_gpu_map)
    if max_cpu_memory is not None:
        max_memory["cpu"] = max_cpu_memory

    args = {}
    if max_memory:
        args["max_memory"] = max_memory
    args["device_map"] = device_map_option
    args["offload_folder"] = offload_folder
    return args

lintangsutawika's avatar
lintangsutawika committed
66

67
@register_model("hf-auto", "hf", "huggingface")
68
class HFLM(TemplateLM):
69
70
71
72
73
74
75
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

76
    AUTO_MODEL_CLASS = None
77
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
78

79
80
    def __init__(
        self,
81
        pretrained: Union[str, transformers.PreTrainedModel],
Baber Abbasi's avatar
Baber Abbasi committed
82
83
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
84
85
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
86
87
88
89
90
91
92
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
93
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
94
        logits_cache: bool = True,
95
96
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
97
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
98
99
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
100
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
101
        use_fast_tokenizer: Optional[bool] = True,
102
        add_bos_token: Optional[bool] = False,
103
        prefix_token_id: Optional[int] = None,
104
        # arguments used for splitting a model across GPUs naively.
105
106
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
107
        device_map_option: Optional[str] = "auto",
108
109
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
110
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
111
        # PEFT, delta weights and quantization options
112
        peft: Optional[str] = None,
113
        delta: Optional[str] = None,
114
115
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
116
    ) -> None:
117
118
        super().__init__()

119
120
121
122
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
123
            )
124
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
125
126
127
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
128
            gpus = 0
129

Nathan Habib's avatar
cleanup  
Nathan Habib committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            if tokenizer:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
            else:
                # Get tokenizer
                model_name = self._model.name_or_path
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    model_name,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )

145
        else:
146
147
148
149
150
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
151
152
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
Nathan Habib's avatar
cleanup  
Nathan Habib committed
153
154
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
155

156
157
158
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

159
160
161
162
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
163
                    + [f"cuda:{i}" for i in range(gpus)]
164
                    + ["mps", "mps:0"]
165
                    + [f"npu:{i}" for i in range(gpus)]
166
                )
167
                if device and device in device_list:
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
184
            else:
185
186
187
188
189
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
cleanup  
Nathan Habib committed
190
                self._device = torch.device(device)
191

192
193
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
194

195
            self._get_config(
196
197
                pretrained,
                revision=revision,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
198
                trust_remote_code=trust_remote_code,
199
200
            )

201
202
203
204
        # determine which of 'causal' and 'seq2seq' backends to use
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
205

206
207
208
209
210
211
212
213
214
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

215
216
217
218
219
220
221
222
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
223
                gpus=gpus,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
224
                device_map_option=device_map_option,
225
226
227
228
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
229
                delta=delta,
230
231
                autogptq=autogptq,
                **kwargs,
232
233
            )

234
        # access self._model through self.model property outside this method
235
236
237
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
238

Nathan Habib's avatar
cleanup  
Nathan Habib committed
239
240
241
242
243
244
245
246
247
248
249
250
251
        if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
            # TODO: can remove this whole snippet except in the mps case, perhaps?
            if not (parallelize or autogptq or hasattr(self, "accelerator")):
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                    )

lintangsutawika's avatar
lintangsutawika committed
252
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
253
        self.logits_cache = logits_cache
254
        self.vocab_size = self.tokenizer.vocab_size
255
256
257
258
259
260
261
262
        # select (or create) a pad token to use
        if self.tokenizer.pad_token:
            pass
        elif self.tokenizer.unk_token:
            self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
        elif self.tokenizer.eos_token:
            self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        else:
263
            if getattr(self.config, "model_type", None) == "qwen":
264
265
                # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
                self.tokenizer.pad_token = "<|endoftext|>"
266
267
268
269
270
271
272
273
274
275
            elif (
                self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
                or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
            ):
                # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
                # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
                # ---
                # Note that the world tokenizer class name, might change in the future for the final huggingface merge
                # https://github.com/huggingface/transformers/pull/26963
                assert self.tokenizer.pad_token_id == 0
276
277
            else:
                self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
278

279
280
        # TODO: override this for Gemma
        self.add_bos_token = add_bos_token
281
282
        if getattr(self.config, "model_type", None) == "gemma":
            self.add_bos_token = True
283
            eval_logger.info(
284
                f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
285
286
            )

287
        self._max_length = max_length
288
289
290
291
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
292
293
294
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
Nathan Habib's avatar
Nathan Habib committed
295
        self.dtype = get_dtype(dtype)
Benjamin Fattori's avatar
Benjamin Fattori committed
296
297
298
299
300
301
302

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
303

304
305
306
        if isinstance(pretrained, str):
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
cleanup  
Nathan Habib committed
307
308
309
310
311
312
313
                if parallelize:
                    if accelerator.num_processes > 1:
                        raise RuntimeError(
                            "Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
                        )
                    else:
                        pass
314
315
316
317
                elif accelerator.num_processes == 1:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
318
                else:
319
320
321
322
323
324
325
                    if gpus > accelerator.num_processes:
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
326
327
328
329
330
                    assert (
                        accelerator.distributed_type
                        in [
                            DistributedType.FSDP,
                            DistributedType.MULTI_GPU,
331
                            DistributedType.MULTI_NPU,
332
333
                        ]
                    ), "Unsupported distributed type provided. Only DDP and FSDP are supported."
334
335
336
337
338
339
                    if accelerator.distributed_type == DistributedType.FSDP:
                        self._model = accelerator.prepare(self.model)
                    else:
                        self._model = accelerator.prepare_model(
                            self.model, evaluation_mode=True
                        )
340
                    self._device = torch.device(f"{accelerator.device}")
341
                    self.accelerator = accelerator
342

343
344
                    if self.accelerator.is_local_main_process:
                        eval_logger.info(f"Using {gpus} devices with data parallelism")
345

346
347
348
349
350
351
352
353
354
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
355

356
        self.custom_prefix_token_id = prefix_token_id
357
358
359
360
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
361

362
363
364
365
366
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

367
368
369
370
371
372
373
374
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

375
376
377
378
379
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

380
381
382
383
384
385
386
387
388
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

389
390
    @property
    def max_length(self):
391
392
393
394
395
396
397
398
399
400
401
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
402

403
    @property
Ethan Smith's avatar
Ethan Smith committed
404
    def max_gen_toks(self) -> int:
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
423
424
425
426
427
428
429
430
431
432
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

    @property
    def chat_template(self) -> str:
        if self.tokenizer.chat_template is not None:
            return self.tokenizer.chat_template
        return self.tokenizer.default_chat_template

433
434
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
435
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
        model type to be used.
        """
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            eval_logger.info(
                f"Overrode HF model backend type, and using type '{backend}'"
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
                # then we default to AutoModelForCausalLM
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM

        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
        return None

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
Nathan Habib's avatar
cleanup  
Nathan Habib committed
491
492
493
494
495
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )
496
497
498
499
500
501
502
503
504
505
506

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
507
        gpus: Optional[int] = None,
Nathan Habib's avatar
cleanup  
Nathan Habib committed
508
        device_map_option: Optional[str] = "auto",
509
510
511
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
512
        # PEFT, delta weights and quantization options
513
        peft: Optional[str] = None,
514
        delta: Optional[str] = None,
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        autogptq: Optional[Union[bool, str]] = False,
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
cleanup  
Nathan Habib committed
532
533
534
535
536
537
538
539
540
        if parallelize:
            model_kwargs.update(
                _get_accelerate_args(
                    device_map_option,  # TODO: phase out device_map_option?
                    max_memory_per_gpu,
                    max_cpu_memory,
                    offload_folder,
                    gpus,
                )
541
            )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
542
543
544
545
546
547
548
549
550
        elif "device_map" not in model_kwargs:
            # set a device_map to initialize model on the right GPU.
            # this is needed because it seems that the default behavior
            # for quantized models now seems to be device_map="auto"
            # which breaks data-parallel mode.
            if hasattr(self, "accelerator"):
                model_kwargs.update({"device_map": {"": f"{self.accelerator.device}"}})
            else:
                model_kwargs.update({"device_map": {"": str(self.device)}})
551

552
553
554
555
556
557
558
559
        if not autogptq:
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
560
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
561
562
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
cleanup  
Nathan Habib committed
563
564
565
566
567
568
569
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        else:
            try:
                from auto_gptq import AutoGPTQForCausalLM
            except ModuleNotFoundError:
                raise Exception(
                    "Tried to load auto_gptq, but auto-gptq is not installed ",
                    "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                )

            self._model = AutoGPTQForCausalLM.from_quantized(
                pretrained,
                trust_remote_code=trust_remote_code,
                model_basename=None if autogptq is True else Path(autogptq).stem,
                use_safetensors=True
                if autogptq is True
                else autogptq.endswith(".safetensors"),
                **model_kwargs,
            )

589
590
591
592
593
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

594
595
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
596
597
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
598
599
600
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
                self._model.resize_token_embeddings(len(self.tokenizer))
601
602
603
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
604
605
606
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Nathan Habib's avatar
Nathan Habib committed
682
    def _detect_batch_size(self, requests=None, pos: int = 0) -> int:
683
684
685
        SECURITY_MARGIN_FACTOR_LOG_PROBS = 4
        SECURITY_MARGIN_FACTOR_GENERATE_UNTIL = 1

Nathan Habib's avatar
linting  
Nathan Habib committed
686
        if len(requests[0]) == 3:  # logprob evals
Nathan Habib's avatar
add doc  
Nathan Habib committed
687
688
            # for logprob evals, we use the maximum context length + continuation length
            # as the default for computing batch size
Benjamin Fattori's avatar
Benjamin Fattori committed
689
690
691
692
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
693
694
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
695
            security_margin_factor = SECURITY_MARGIN_FACTOR_LOG_PROBS
Nathan Habib's avatar
linting  
Nathan Habib committed
696
        elif len(requests[0]) == 2:  # generative evals
Nathan Habib's avatar
add doc  
Nathan Habib committed
697
698
699
            # for generative evals, we use either the maximum context length of the model
            # or the longest context of the requests, whichever is shorter as it will be truncated
            # + the allowed maximum generation length
Nathan Habib's avatar
linting  
Nathan Habib committed
700
701
702
703
704
705
706
            longest_context = max(
                [
                    len(self.tok_encode(request[0]))
                    + request[1].get("max_gen_toks", self.max_length)
                    for request in requests[pos:]
                ]
            )
Nathan Habib's avatar
Nathan Habib committed
707
708
709
710
711
712
            if longest_context > self.max_length:
                eval_logger.warning(
                    f"Longest context length of {longest_context} exceeds max_length of {self.max_length}. Truncating to max_length."
                )
                longest_context = self.max_length
            max_length = longest_context
713
714
            max_context_enc = max_length
            max_cont_enc = max_length
715
            security_margin_factor = SECURITY_MARGIN_FACTOR_GENERATE_UNTIL
Nathan Habib's avatar
Nathan Habib committed
716

Benjamin Fattori's avatar
Benjamin Fattori committed
717
718
719
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
Nathan Habib's avatar
Nathan Habib committed
720
            security_margin = int(0.05 * security_margin_factor * batch_size)
721
722
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
723
                batched_conts = torch.ones(
Nathan Habib's avatar
Nathan Habib committed
724
                    (batch_size + security_margin, length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
725
                ).long()
Nathan Habib's avatar
linting  
Nathan Habib committed
726
727
728
                test_batch = torch.ones(
                    (batch_size + security_margin, length), device=self.device
                ).long()
729
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
730
731
732
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
733
734
            else:
                call_kwargs = {}
Nathan Habib's avatar
Nathan Habib committed
735
736
                test_batch = torch.rand(
                    (batch_size + security_margin, max_length), device=self.device
lintangsutawika's avatar
lintangsutawika committed
737
                ).long()
Nathan Habib's avatar
Nathan Habib committed
738

Nathan Habib's avatar
add doc  
Nathan Habib committed
739
            for _ in range(5):
Nathan Habib's avatar
Nathan Habib committed
740
741
                logits = self._model_call(inps=test_batch, **call_kwargs).float()
                scores = F.log_softmax(logits, dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
742

Benjamin Fattori's avatar
Benjamin Fattori committed
743
744
            return batch_size

745
746
747
748
749
750
751
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
752

753
754
755
756
757
758
759
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
760
            clear_torch_cache()
761
762
            return batch_size

763
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
764
765
        return batch_size

baberabb's avatar
baberabb committed
766
767
768
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
769
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
770
771
772
773
774
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
775
776
        if add_special_tokens is None:
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
777
778
779
780
781
782
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
783

Lintang Sutawika's avatar
Lintang Sutawika committed
784
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
785

786
787
788
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
789

790
791
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
792
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
793
794
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
795
        padding_side: str = "left",
796
797
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
798
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
799
800
801
802
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
803
        add_special_tokens = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
804
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
Lintang Sutawika's avatar
Lintang Sutawika committed
805
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
806
807
808

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
809
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
810
811
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
812
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
813
814
815
816
817
818
819
820
821
822
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
823
824
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
825
826
827

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
828
        :param inps: torch.Tensor
829
830
831
832
833
834
835
836
837
838
839
840
841
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
842
843
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
844
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
845
846
847
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
848
849
850
851
852
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
853
        # temperature = 0.0 if not set
854
855
856
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
857
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
858
        do_sample = generation_kwargs.get("do_sample", None)
859
860
861
862
863

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
864
865
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
866
867
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
868
            self.tokenizer, stop, context.shape[1], context.shape[0]
869
        )
870
        return self.model.generate(
871
            input_ids=context,
872
873
            max_length=max_length,
            stopping_criteria=stopping_criteria,
874
            pad_token_id=self.tokenizer.pad_token_id,
875
876
877
            use_cache=True,
            **generation_kwargs,
        )
878

Baber Abbasi's avatar
Baber Abbasi committed
879
880
881
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
882
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
883
884
885
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
886
887
888
889
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
890
891
892
893
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
894
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
895
896
            logits = logits[:contlen]

897
898
        return logits

899
900
901
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
902
        loglikelihoods = []
903
904
905
        for (string,) in tqdm(
            [req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
        ):
906
907
908
909
910
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
911
                        prefix_token=self.prefix_token_id,
912
913
914
915
916
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
917
918

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
Baber Abbasi's avatar
Baber Abbasi committed
934
                requests=rolling_token_windows,
lintangsutawika's avatar
lintangsutawika committed
935
                disable_tqdm=True,
936
937
938
939
940
941
942
943
944
945
946
947
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
948

949
950
951
952
953
954
955
956
957
958
959
960
961
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
962
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
963
964
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
965

Nathan Habib's avatar
Nathan Habib committed
966
967
968
969
    def _reset_batch_scheduler(self):
        """When we change group in generative evaluations, we reset the batch size"""
        self.batch_sizes = {}

Ethan Smith's avatar
Ethan Smith committed
970
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
971
972
973
974
975
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
976
977
978
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
979
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
980
            """Defines the key for the sorted method"""
981
982
983
984
985
986
987
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
988
            toks = req[1] + req[2]
989
990
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
991
992
993
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
994
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
            and self.logits_cache
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1008
1009
1010

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1011
1012
1013
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1014
1015
1016
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1017
1018
1019
1020
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1021
1022
1023
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1024
            else None
1025
1026
        )

Nathan Habib's avatar
cleanup  
Nathan Habib committed
1027
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1028
1029
1030
1031
1032
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1033
        for chunk in chunks:
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1053
                # how this all works (illustrated on a causal decoder-only setup):
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1065
1066
                        device=self.device,
                    )
1067
1068
1069
1070
1071
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1072
                        device=self.device,
1073
                    )
1074
                    (inplen,) = inp.shape
1075
1076
1077
1078

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1079
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1080
                        (continuation_enc)[-self.max_length :],
1081
1082
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1083
                        dtype=torch.long,
1084
1085
                        device=self.device,
                    )
1086
1087
                    (contlen,) = cont.shape

1088
1089
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1090
1091
1092
1093
1094
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1095

haileyschoelkopf's avatar
haileyschoelkopf committed
1096
1097
1098
1099
1100
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1101
1102
1103
1104

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1105

1106
1107
1108
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
1109
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1110
1111
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1112
1113
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
1114
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1115
1116
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1117
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1118
1119
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1120
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1121
1122
1123
1124
1125
1126
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1127
1128

            multi_logits = F.log_softmax(
Nathan Habib's avatar
Nathan Habib committed
1129
                self._model_call(batched_inps, **call_kwargs),
Nathan Habib's avatar
linting  
Nathan Habib committed
1130
                dim=-1,
Nathan Habib's avatar
Nathan Habib committed
1131
                dtype=self.dtype,
1132
            )  # [batch, padding_length (inp or cont), vocab]
1133

Baber Abbasi's avatar
Baber Abbasi committed
1134
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1135
1136
1137
1138
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1139
                # take only logits in the continuation
1140
                # (discard context toks if decoder-only ; discard right-padding)
1141
1142
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
                ctx_len = (
1144
                    inplen + (logits.shape[0] - padding_len_inp)
haileyschoelkopf's avatar
haileyschoelkopf committed
1145
1146
1147
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
1148
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1149
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1150
1151
1152
1153

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

                    self.cache_hook.add_partial("loglikelihood", request_str, answer)
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1183
1184

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1185

1186
1187
        return re_ord.get_original(res)

1188
1189
1190
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1191
        res = []
1192

Baber Abbasi's avatar
Baber Abbasi committed
1193
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1194
            """Defines the key for the sorted method"""
1195
1196
1197
1198
1199
1200
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1201
1202
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1203

1204
1205
        pbar = tqdm(
            total=len(requests),
1206
            disable=(disable_tqdm or (self.rank != 0)),
1207
1208
            desc="Running generate_until requests",
        )
Nathan Habib's avatar
linting  
Nathan Habib committed
1209
1210
        batch_size = self.batch_size if self.batch_size != "auto" else 0
        batch_fn = self._batch_scheduler if self.batch_size == "auto" else None
1211

Baber Abbasi's avatar
Baber Abbasi committed
1212
1213
1214
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1215
1216
1217
1218
1219
1220
1221
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Nathan Habib's avatar
linting  
Nathan Habib committed
1222
1223
1224
        chunks = re_ords.get_batched(
            n=batch_size, batch_fn=batch_fn, reset_batch_fn=self._reset_batch_scheduler
        )
Baber Abbasi's avatar
Baber Abbasi committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
achervyakov's avatar
achervyakov committed
1237
                        until = [until]
Baber Abbasi's avatar
Baber Abbasi committed
1238
1239
1240
1241
1242
1243
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1244
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1245
                )
1246
            # add EOS token to stop sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
1247
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1248
            if not until:
1249
1250
1251
                until = [eos]
            else:
                until.append(eos)
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1252

Baber Abbasi's avatar
Baber Abbasi committed
1253
1254
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
Nathan Habib's avatar
linting  
Nathan Habib committed
1255
1256
1257
                if (
                    max_gen_toks > self.max_length
                ):  # some model have low max length limit
Nathan Habib's avatar
Nathan Habib committed
1258
                    max_gen_toks = self.max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1259
1260
1261
1262
1263
1264
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                # max len for inputs = max length, minus room to generate the max new tokens
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1265
1266
                # if the max new tokens is too large, halve it until it fits as we cannot change
                # the max model length
Baber Abbasi's avatar
Baber Abbasi committed
1267
                max_ctx_len = self.max_length - max_gen_toks
Nathan Habib's avatar
Nathan Habib committed
1268
1269
1270
                while max_ctx_len <= 0:
                    max_gen_toks = max_gen_toks // 2
                    max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1283

Baber Abbasi's avatar
Baber Abbasi committed
1284
1285
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1286

Baber Abbasi's avatar
Baber Abbasi committed
1287
1288
1289
1290
1291
1292
1293
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1294

Baber Abbasi's avatar
Baber Abbasi committed
1295
1296
1297
1298
1299
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    cont_toks = cont_toks[context_enc.shape[1] :]
1300

Baber Abbasi's avatar
Baber Abbasi committed
1301
                s = self.tok_decode(cont_toks)
1302

Baber Abbasi's avatar
Baber Abbasi committed
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1316

1317
        pbar.close()
1318

Baber Abbasi's avatar
Baber Abbasi committed
1319
        return res
1320

KonradSzafer's avatar
KonradSzafer committed
1321
1322
1323
1324
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
Nathan Habib's avatar
cleanup  
Nathan Habib committed
1325
1326
1327
        return self.tokenizer.apply_chat_template(
            chat_history, tokenize=False, add_generation_prompt=True
        )
KonradSzafer's avatar
KonradSzafer committed
1328

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
                eval_logger.warn(
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info