test_utils.py 16.7 KB
Newer Older
1
2
3
import itertools

import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
4
import pytest
Baber Abbasi's avatar
Baber Abbasi committed
5
import torch
Baber Abbasi's avatar
Baber Abbasi committed
6

7
8
9
10
11
12
from lm_eval.api.metrics import (
    aggregate_subtask_metrics,
    mean,
    pooled_sample_stderr,
    stderr_for_metric,
)
13
from lm_eval.models.utils import Collator
Baber Abbasi's avatar
Baber Abbasi committed
14
from lm_eval.utils import (
Baber's avatar
Baber committed
15
    apply_template,
Baber Abbasi's avatar
Baber Abbasi committed
16
17
18
    get_rolling_token_windows,
    make_disjoint_window,
)
Jason Phang's avatar
Jason Phang committed
19
20
21
22
23
24


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v1():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
Fabrizio Milo's avatar
Fabrizio Milo committed
25
26
27
28
29
30
31
32
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
Jason Phang's avatar
Jason Phang committed
33
34
35
36
37
38
39
40
41
42
43
44
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
45
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v2():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=8,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
74
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v3():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]),
        ([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]),
        ([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
119
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v4():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
160
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
161
162
163
164
165
166
167
168
169
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v5():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
Fabrizio Milo's avatar
Fabrizio Milo committed
170
171
172
173
174
175
176
177
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
Jason Phang's avatar
Jason Phang committed
178
179
180
181
182
183
184
185
186
187
188
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
189
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v6():
    gold = [
        ([-100, 0], [0, 1]),
        ([1, 2], [2, 3]),
        ([3, 4], [4, 5]),
        ([5, 6], [6, 7]),
        ([6, 7], [8]),
    ]
    x = list(range(9))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
214
        output.extend([(input_tokens, pred_tokens)])
Jason Phang's avatar
Jason Phang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


def test_get_rolling_token_windows_empty():
    generator = get_rolling_token_windows(
        token_list=[],
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    n = 0
    for _ in generator:
        n += 1
    assert n == 0
Leo Gao's avatar
Leo Gao committed
231
232
233


def test_make_disjoint_window():
Fabrizio Milo's avatar
Fabrizio Milo committed
234
235
236
237
238
    assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == (
        [1],
        [2, 3, 4, 5, 6],
    )
    assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6])
239
    assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6])
Baber Abbasi's avatar
Baber Abbasi committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262


class TestCollator:
    def make_generate_sample(self, end=10):
        strings = ["x" * i for i in range(1, end + 1)]
        gen_kwargs1, gen_kwargs2 = (
            {"temperature": 0},
            {"temperature": 0, "until": ["nn", "\n\n"]},
        )
        args = [
            (string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2)
            for i, string in enumerate(strings)
        ]

        return args

    def make_loglikelihood_sample(self, end=11):
        samples = [
            (("x", "x"), list(range(1, total_length + 1)))
            for total_length in range(1, end + 1)
        ]
        return samples

Baber Abbasi's avatar
Baber Abbasi committed
263
264
265
266
267
268
269
270
    def make_loglikelihood_sample_group(self, end=11):
        a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)]
        b = [
            (("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z])
            for x, y, z in zip(range(9), range(9, 18), range(18, 27))
        ]
        return a + b

Baber Abbasi's avatar
Baber Abbasi committed
271
272
273
274
275
    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)])
    def test_generations(self, batch_size, end):
        _collate_gen = lambda x: (-len(x[0]), x[0])  # noqa: E731

        generation_samples = self.make_generate_sample(int(end))
Baber Abbasi's avatar
Baber Abbasi committed
276
        gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs")
277
        chunks_gen = gens.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
278
        output = []
279
280
281
282
        group_one = end // 2
        group_two = end - end // 2
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
283
284
285
            # check batching
            assert (
                len(chunks) <= batch_size
286
                if is_batch
Baber Abbasi's avatar
Baber Abbasi committed
287
288
289
                else len(chunks) in [group_one, group_two]
            )
            # check if reorder-er is working correctly
290
291
            chunk_lengths = [len(chunk[0]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
292
            # check if grouping correctly
293
294
            chunk_to_compare = chunks[0][1]
            assert all(x[1] == chunk_to_compare for x in chunks)
Baber Abbasi's avatar
Baber Abbasi committed
295
            for x in chunks:
296
                output.extend([x])
Baber Abbasi's avatar
Baber Abbasi committed
297
298
299
300
301
302
303
304
        reordered_output = gens.get_original(output)
        # check get original
        assert reordered_output == generation_samples

    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)])
    def test_loglikelihood(self, batch_size, end):
        _collate_log = lambda x: (-len(x[1]), tuple(x[1]))  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample(int(end))
Baber Abbasi's avatar
Baber Abbasi committed
305
306
307
308
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
        )
309
        chunks_gen = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
310
        output = []
311
312
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
313
            # check batching
314
            assert len(chunks) <= batch_size if is_batch else len(chunks) == end
Baber Abbasi's avatar
Baber Abbasi committed
315
            # check reorder
316
317
            chunk_lengths = [len(chunk[1]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
318
            for x in chunks:
319
                output.extend([x[1]])
Baber Abbasi's avatar
Baber Abbasi committed
320
321
322
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]
323

Baber Abbasi's avatar
Baber Abbasi committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    @pytest.mark.parametrize("batch_size", [17, 8, 12, 0])
    def test_context_grouping(self, batch_size):
        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        _collate_log = _collate  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample_group()
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
            group_fn=lambda a: a[-2] + a[-1][:-1],
            group_by="contexts",
        )
338
        chunks_gen = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
Baber Abbasi's avatar
Baber Abbasi committed
339
340
        output = []
        outputs_ = []
341
342
        is_batch = batch_size != 0
        for chunks in chunks_gen:
Baber Abbasi's avatar
Baber Abbasi committed
343
            # check batching
344
            if is_batch:
Baber Abbasi's avatar
Baber Abbasi committed
345
346
                assert len(chunks) <= batch_size
            # check reorder
347
348
            chunk_lengths = [len(chunk[1]) for chunk in chunks]
            assert chunk_lengths == sorted(chunk_lengths, reverse=True)
Baber Abbasi's avatar
Baber Abbasi committed
349
350
351
352
353
354
355
356
357
            for x in chunks:
                for request_str, cont_toks, logits in loglikelihoods.get_cache(
                    req_str="".join(x[0]),
                    cxt_toks=x[1],
                    cont_toks=x[2],
                    logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
                    .unsqueeze(0)
                    .unsqueeze(0),
                ):
358
359
                    output.extend([x[1]])
                    outputs_.extend([cont_toks])
Baber Abbasi's avatar
Baber Abbasi committed
360
361
362
363
364
        assert len(output) == len(outputs_)
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

def test_aggregate_mean():
    # test weight_by_size is respected
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False)
        == 0.3
    )
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True)
        == 0.3375
    )


@pytest.mark.parametrize(
    "samples",
    [
        [40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]],
        [35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]],
    ],
)
def test_aggregate_stderrs(samples):
    # check that aggregating subtasks' bootstrap stderrs with our formula
    # (using weight_by_size) is ~equiv.
    # to just getting bootstrap stderr of the whole set of samples
    mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000)

    stderrs = [mean_stderr(subtask) for subtask in samples]

    sizes = [len(subtask) for subtask in samples]

    assert np.allclose(
        pooled_sample_stderr(stderrs, sizes),
        mean_stderr(list(itertools.chain.from_iterable(samples))),
        atol=1.0e-3,
    )
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491


def test_apply_template():
    """Test the apply_template function with various scenarios."""

    # Test basic variable substitution
    result = apply_template("Hello {{name}}!", {"name": "World"})
    assert result == "Hello World!"

    # Test multiple variables
    result = apply_template(
        "{{greeting}} {{name}}!", {"greeting": "Hi", "name": "Alice"}
    )
    assert result == "Hi Alice!"

    # Test missing variable (should raise error due to StrictUndefined)
    with pytest.raises(Exception):  # Jinja2 will raise UndefinedError
        apply_template("Hello {{missing}}!", {})

    # Test empty template
    result = apply_template("", {})
    assert result == ""

    # Test template with no variables
    result = apply_template("Static text", {"unused": "variable"})
    assert result == "Static text"

    # Test numeric variables
    result = apply_template("Count: {{count}}", {"count": 42})
    assert result == "Count: 42"

    # Test boolean variables
    result = apply_template("Flag: {{flag}}", {"flag": True})
    assert result == "Flag: True"

    # Test list variables
    result = apply_template("Items: {{items}}", {"items": [1, 2, 3]})
    assert result == "Items: [1, 2, 3]"

    # Test regex_replace filter
    result = apply_template(
        "{{text | regex_replace('[0-9]+', 'X')}}", {"text": "abc123def456"}
    )
    assert result == "abcXdefX"

    # Test regex_replace with count parameter
    result = apply_template(
        "{{text | regex_replace('[0-9]+', 'X', 1)}}", {"text": "abc123def456"}
    )
    assert result == "abcXdef456"

    # Test complex template with loops
    result = apply_template(
        "{% for item in items %}{{item}} {% endfor %}", {"items": ["a", "b", "c"]}
    )
    assert result == "a b c "

    # Test conditional template
    result = apply_template("{% if flag %}Yes{% else %}No{% endif %}", {"flag": True})
    assert result == "Yes"

    result = apply_template("{% if flag %}Yes{% else %}No{% endif %}", {"flag": False})
    assert result == "No"

    # Test whitespace handling (keep_trailing_newline=True)
    result = apply_template("Line 1\nLine 2\n", {})
    assert result == "Line 1\nLine 2\n"


def test_apply_template_lazy_initialization():
    """Test that the Jinja2 Environment is lazily initialized."""

    # Clear any existing environment to test fresh initialization
    if hasattr(apply_template, "_env"):
        delattr(apply_template, "_env")

    # Environment should not exist before first call
    assert not hasattr(apply_template, "_env")

    # First call should create the environment
    apply_template("{{test}}", {"test": "value"})
    assert hasattr(apply_template, "_env")

    # Store reference to the environment
    env = apply_template._env

    # Second call should reuse the same environment
    apply_template("{{test}}", {"test": "value"})
    assert apply_template._env is env  # Same object reference

    # Environment should have the custom regex_replace filter
    assert "regex_replace" in apply_template._env.filters