wsc273.py 4.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import random
from lm_eval.base import rf, mean
from . common import HFTask

"""
NOTE: This evaluation of Winograd Schema Challenge is based on `partial evaluation`
as described by Trinh & Le in Simple Method for Commonsense Reasoning (2018).
See: https://arxiv.org/abs/1806.02847
"""


class WinogradSchemaChallenge273(HFTask):
    DATASET_PATH = "winograd_wsc"
    DATASET_NAME = "wsc273"

    upper_pronouns = ["A", "An", "The", "She", "He",
                      "It", "They", "My", "His", "Her", "Their"]

    def __init__(self):
        super().__init__()
        self.data = self.__clean_data()

    def __clean_data(self):
        # The HF implementation of `wsc273` is not `partial evaluation` friendly.
        data = []
        for doc in self.data["test"]:
            doc["text"] = doc["text"].replace("  ", " ")
            doc["options"][0] = self.__normalize_option(doc["options"][0], doc)
            doc["options"][1] = self.__normalize_option(doc["options"][1], doc)
            data.append(doc)
        return {"test": data}

    def __normalize_option(self, option, doc):
        # Append `'s` to possessive determiner based options.
        if doc["pronoun"].lower() in ["my", "his", "her", "our", "their"]: 
            option += "'s"
        # Appropriately lowercase the pronoun in the option.
        pronoun = option.split()[0]
        start_of_sentence = doc["text"][doc['pronoun_loc'] - 2] == '.'
        if not start_of_sentence and pronoun in self.upper_pronouns:
            return option.replace(pronoun, pronoun.lower())
        return option

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def fewshot_examples(self, k):
        # NOTE: `super().fewshot_examples` samples from training docs which are
        # not available for this test-set-only dataset.
        return random.sample(list(self.test_docs()), k)

    def fewshot_description(self):
        # TODO: redo description
        return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."

    @classmethod
    def partial_context(cls, doc):
        # Substitute the pronoun in the original text with each candidate 
        # choice and ignore everything after. 
        context1 = doc["text"][:doc["pronoun_loc"]] + doc["options"][0]
        context2 = doc["text"][:doc["pronoun_loc"]] + doc["options"][1]
        return context1, context2

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        start_index = doc["pronoun_loc"] + len(doc["pronoun"])
        return doc["text"][start_index:].strip()

    def doc_to_text(self, doc):
        context1, context2 = self.partial_context(doc)
        return context1 + '\n' + context2 + '\n'

    def doc_to_target(self, doc):
        return self.partial_target(doc)

    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        target = self.partial_target(doc)
        context1, context2 = self.partial_context(doc)
        ll_context1, _ = rf.loglikelihood(context1, " " + target)
        ll_context2, _ = rf.loglikelihood(context2, " " + target)
        return ll_context1, ll_context2

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        return {
            "acc": np.argmax(results) == doc["label"]
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        return {
            "acc": mean
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        return {
            "acc": True
        }