main.py 4.46 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
Jason Phang's avatar
Jason Phang committed
2
import json
3
import fnmatch
lintangsutawika's avatar
lintangsutawika committed
4
import argparse
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
import logging
Leo Gao's avatar
Leo Gao committed
6

7
from lm_eval import evaluator, utils
lintangsutawika's avatar
lintangsutawika committed
8
from lm_eval.tasks import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
9
from lm_eval.logger import eval_logger
Jason Phang's avatar
lib  
Jason Phang committed
10

lintangsutawika's avatar
lintangsutawika committed
11
os.environ["TOKENIZERS_PARALLELISM"] = "false"
FarzanehNakhaee's avatar
FarzanehNakhaee committed
12
logger = logging.getLogger("main")
Fabrizio Milo's avatar
Fabrizio Milo committed
13

14
15
16
17
18
19
20
21
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
            if len(fnmatch.filter(self.choices, value)) == 0:
lintangsutawika's avatar
lintangsutawika committed
22
                eval_logger.warning("{} is not in task list.".format(value))
lintangsutawika's avatar
lintangsutawika committed
23
                # eval_logger.info(f"{choices} is this")
24
25
26
27
28
29
30

        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice

Fabrizio Milo's avatar
Fabrizio Milo committed
31

Jason Phang's avatar
Jason Phang committed
32
33
def parse_args():
    parser = argparse.ArgumentParser()
Fabrizio Milo's avatar
Fabrizio Milo committed
34
35
    parser.add_argument("--model", required=True)
    parser.add_argument("--model_args", default="")
36
    parser.add_argument("--tasks", default=None, choices=MultiChoice(ALL_TASKS))
37
    parser.add_argument("--config", default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
38
39
    parser.add_argument("--provide_description", action="store_true")
    parser.add_argument("--num_fewshot", type=int, default=0)
40
    parser.add_argument("--batch_size", type=int, default=1)
Fabrizio Milo's avatar
Fabrizio Milo committed
41
42
43
44
45
46
47
    parser.add_argument("--device", type=str, default=None)
    parser.add_argument("--output_path", default=None)
    parser.add_argument("--limit", type=int, default=None)
    parser.add_argument("--no_cache", action="store_true")
    parser.add_argument("--decontamination_ngrams_path", default=None)
    parser.add_argument("--description_dict_path", default=None)
    parser.add_argument("--check_integrity", action="store_true")
Jason Phang's avatar
Jason Phang committed
48
49
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
50

51
52
53
54
55
56
57
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
58
    return sorted(list(task_names))
59

FarzanehNakhaee's avatar
FarzanehNakhaee committed
60
61
62
63
64
65
66
67
68
69
def setup_example_logger(output_path, separator):
    """Sets up a logger that will save each example and prediction."""
    example_logger = logging.getLogger("examples")
    filename = f"./outputs/examples{separator}{output_path}.jsonl"
    formatter = logging.Formatter("%(message)s")
    handler = logging.FileHandler(filename)
    handler.setFormatter(formatter)
    example_logger.addHandler(handler)
    example_logger.setLevel(logging.INFO)

Fabrizio Milo's avatar
Fabrizio Milo committed
70

71
def main():
FarzanehNakhaee's avatar
FarzanehNakhaee committed
72
73
    os.makedirs("./outputs", exist_ok=True)
    args = parse_args()    
Fabrizio Milo's avatar
Fabrizio Milo committed
74

Leo Gao's avatar
Leo Gao committed
75
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
76
77
78
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
79
        )
Leo Gao's avatar
Leo Gao committed
80

FarzanehNakhaee's avatar
FarzanehNakhaee committed
81
82
83
84
    path_separator = "."
    output_path = args.output_path if args.output_path is not None else ""
    setup_example_logger(output_path, path_separator)

lintangsutawika's avatar
lintangsutawika committed
85
    if args.tasks is not None:
86
87
        if os.path.isdir(args.tasks):
            import glob
88
89

            task_names = []
90
91
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
92
                config = utils.load_yaml_config(yaml_file)
93
94
                task_names.append(config)
        else:
95
96
97
98
            tasks_list = args.tasks.split(",")
            task_names = pattern_match(tasks_list, ALL_TASKS)
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
99
                    config = utils.load_yaml_config(task)
100
                    task_names.append(config)
lintangsutawika's avatar
lintangsutawika committed
101

lintangsutawika's avatar
lintangsutawika committed
102
    eval_logger.info(f"Selected Tasks: {task_names}")
103

104
105
106
107
108
109
110
111
112
113
114
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
        device=args.device,
        limit=args.limit,
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
    )
115
116
117
118
119
120
121
122
123
124
125
126
127
    if results is not None:
        dumped = json.dumps(results, indent=2)
        print(dumped)

        if args.output_path:
            with open(args.output_path, "w") as f:
                f.write(dumped)

        print(
            f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
            f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
        )
        print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
128

129

Jason Phang's avatar
Jason Phang committed
130
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
131
    main()