hf_vlms.py 11.9 KB
Newer Older
haileyschoelkopf's avatar
haileyschoelkopf committed
1
import copy
haileyschoelkopf's avatar
haileyschoelkopf committed
2
from typing import Dict, List, Optional, Tuple, Union
haileyschoelkopf's avatar
haileyschoelkopf committed
3

haileyschoelkopf's avatar
haileyschoelkopf committed
4
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import transformers
from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM
from lm_eval.models.utils import Collator, stop_sequences_criteria


@register_model("hf-multimodal")
class HFMultimodalLM(HFLM):
    """
    An abstracted Hugging Face model class for multimodal LMs like Llava and Idefics.
    """

    AUTO_MODEL_CLASS = transformers.AutoModelForVision2Seq  # TODO: what's the right way to handle this. maybe phase out the direct class-equality checks in HFLM?

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.ProcessorMixin,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        **kwargs,
    ) -> None:
        """
        Helper method during initialization.

        For the multimodal variant, we initialize not just
        `self.tokenizer` but also `self.processor`.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                return transformers.AutoProcessor.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    # use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                return tokenizer

        # Get tokenizer based on 'pretrained'
        if isinstance(pretrained, str):
            model_name = pretrained
        else:
            # get the HF hub name via accessor on model
            model_name = self.model.name_or_path

        self.processor = transformers.AutoProcessor.from_pretrained(
            model_name,
            revision=revision,
            trust_remote_code=trust_remote_code,
            # use_fast=use_fast_tokenizer,
        )

        self.tokenizer = self.processor.tokenizer

    # def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
    #     """
    #     Method to apply a chat template to a list of chat history between user and model.
    #     """
    #     return self.tokenizer.apply_chat_template(
    #         chat_history, tokenize=False, add_generation_prompt=True
    #     )

    # def tok_encode(
    #     self, string: str, left_truncate_len=None, add_special_tokens=None
    # ) -> List[int]:
    #     """ """
    #     # default for None - empty dict, use predefined tokenizer param
    #     # used for all models except for CausalLM or predefined value
    #     special_tokens_kwargs = {}

    #     # by default for CausalLM - false or self.add_bos_token is set
    #     if add_special_tokens is None:
    #         if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
    #             special_tokens_kwargs = {
    #                 "add_special_tokens": False or self.add_bos_token
    #             }
    #     # otherwise the method explicitly defines the value
    #     else:
    #         special_tokens_kwargs = {"add_special_tokens": add_special_tokens}

    #     encoding = self.tokenizer.encode(string, **special_tokens_kwargs)

    #     # left-truncate the encoded context to be at most `left_truncate_len` tokens long
    #     if left_truncate_len:
    #         encoding = encoding[-left_truncate_len:]

    #     return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    def tok_batch_encode(
        self,
        strings: List[str],  # note that input signature of this fn is different
        visuals,  # TODO: typehint on this
        padding_side: str = "left",
        left_truncate_len: int = None,
        truncation: bool = False,
    ) -> Dict[
        str, torch.Tensor
    ]:  # TODO: note that this return signature differs from HFLM tok_batch_encode.
        # TODO: we should allow

        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        add_special_tokens = {}
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}

        encoding = self.processor(
            strings,
            truncation=truncation,
            padding="longest",
            return_tensors="pt",
            **add_special_tokens,
        ).to(
            self.device, self.model.dtype
        )  # TODO: casting to dtype seems odd for input_ids and attn_mask.
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side
haileyschoelkopf's avatar
haileyschoelkopf committed
141

haileyschoelkopf's avatar
haileyschoelkopf committed
142
        return encoding
haileyschoelkopf's avatar
haileyschoelkopf committed
143
144
145
146

    # def tok_decode(self, tokens, skip_special_tokens=True):
    #     return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)

haileyschoelkopf's avatar
haileyschoelkopf committed
147
    def _model_generate(self, inputs, max_length, stop, **generation_kwargs):
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        # gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))]
haileyschoelkopf's avatar
haileyschoelkopf committed
149
150
151
152
153
154
155
156
157
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
        do_sample = generation_kwargs.get("do_sample", None)

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
haileyschoelkopf's avatar
haileyschoelkopf committed
158
159
160
161
162
163
164
165
166

        stopping_criteria = stop_sequences_criteria(
            self.tokenizer,
            stop,
            inputs["input_ids"].shape[1],
            inputs["input_ids"].shape[0],
        )
        return self.model.generate(
            **inputs,
haileyschoelkopf's avatar
haileyschoelkopf committed
167
            max_length=max_length,
haileyschoelkopf's avatar
haileyschoelkopf committed
168
            stopping_criteria=stopping_criteria,
haileyschoelkopf's avatar
haileyschoelkopf committed
169
            pad_token_id=self.tokenizer.pad_token_id,
haileyschoelkopf's avatar
haileyschoelkopf committed
170
            use_cache=True,
haileyschoelkopf's avatar
haileyschoelkopf committed
171
            **generation_kwargs,
haileyschoelkopf's avatar
haileyschoelkopf committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        )

    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
        raise NotImplementedError(
            "model type `hf-multimodal` does not support loglikelihood_rolling. Use 'hf' model type for text-only loglikelihood_rolling tasks"
        )

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
        raise NotImplementedError(
            "model type `hf-multimodal` does not support loglikelihood or multiple choice. Use 'hf' model type for text-only loglikelihood tasks"
        )

    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            toks = self.tok_encode(x[0])
            return -len(toks), x[0]

        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running generate_until requests with text+image input",
        )
        # TODO: port auto-batch sizing into this.

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = Collator(
            [reg.args for reg in requests],
            _collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)

        ### Up to here: was identical to non-multimodal HFLM generate_until ###

        for chunk in chunks:
220
            contexts, all_gen_kwargs, aux_arguments = zip(
haileyschoelkopf's avatar
haileyschoelkopf committed
221
                *chunk
222
            )  # TODO: can we cut down further on number of distinct things we pass around?
haileyschoelkopf's avatar
haileyschoelkopf committed
223
224

            visuals = [
225
226
                arg["visual"] for arg in aux_arguments
            ]  # TODO: I think *fully* flattening is just wrong for bs>1 ??
haileyschoelkopf's avatar
haileyschoelkopf committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

            ### this part onward: same as HFLM ###

            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
                )
            # add EOS token to stop sequences
            eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
            if not until:
                until = [eos]
            else:
                until.append(eos)
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            ### end stuff that's entirely copied verbatim from HFLM ###

            max_ctx_len = self.max_length - max_gen_toks  # noqa: F841 # TODO: this assumes we are using a causal LM. is that always valid? shouldn't be

haileyschoelkopf's avatar
haileyschoelkopf committed
264
265
266
267
268
269
            inputs = self.tok_batch_encode(
                contexts,
                visuals,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            ).to(self.device, self.model.dtype)
haileyschoelkopf's avatar
haileyschoelkopf committed
270
271
272
273
274
275

            context_enc = inputs["input_ids"]

            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks

haileyschoelkopf's avatar
haileyschoelkopf committed
276
            cont = self._model_generate(inputs, stop=until, **kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

            ### essentially same as HFLM beyond this line!

            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
                # if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM: # TODO: ensure this holds for VLMs
                cont_toks = cont_toks[context_enc.shape[1] :]

                s = self.tok_decode(cont_toks)

                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)
                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)

        pbar.close()
        return res