gpt2.py 4.15 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import torch
Xingjian Shi's avatar
Xingjian Shi committed
2
import transformers
3
from typing import Optional
4
from lm_eval.base import BaseLM
Jason Phang's avatar
gpt3  
Jason Phang committed
5
6


7
class HFLM(BaseLM):
Fabrizio Milo's avatar
Fabrizio Milo committed
8
9
10
11
12
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
Xingjian Shi's avatar
Xingjian Shi committed
13
        low_cpu_mem_usage=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
14
15
16
        subfolder=None,
        tokenizer=None,
        batch_size=1,
17
18
        load_in_8bit: Optional[bool] = False,
        trust_remote_code: Optional[bool] = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
19
    ):
Leo Gao's avatar
Leo Gao committed
20
        super().__init__()
21
22
23
24
25

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

Fabrizio Milo's avatar
Fabrizio Milo committed
26
        if device:
27
28
            if device not in ["cuda", "cpu"]:
                device = int(device)
researcher2's avatar
researcher2 committed
29
            self._device = torch.device(device)
30
            print(f"Using device '{device}'")
Leo Gao's avatar
Leo Gao committed
31
        else:
Fabrizio Milo's avatar
Fabrizio Milo committed
32
            print("Device not specified")
33
            print(f"Cuda Available? {torch.cuda.is_available()}")
Fabrizio Milo's avatar
Fabrizio Milo committed
34
35
36
37
38
            self._device = (
                torch.device("cuda")
                if torch.cuda.is_available()
                else torch.device("cpu")
            )
39

40
41
42
        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

43
        self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained(
44
45
46
47
48
            pretrained,
            load_in_8bit=load_in_8bit,
            low_cpu_mem_usage=low_cpu_mem_usage,
            revision=revision,
            trust_remote_code=trust_remote_code,
49
        ).to(self.device)
Leo Gao's avatar
Leo Gao committed
50
        self.gpt2.eval()
Leo Gao's avatar
Leo Gao committed
51

52
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
Fabrizio Milo's avatar
Fabrizio Milo committed
53
            pretrained if tokenizer is None else tokenizer,
54
            revision=revision,
55
            trust_remote_code=trust_remote_code,
Fabrizio Milo's avatar
Fabrizio Milo committed
56
        )
57

Fabrizio Milo's avatar
Fabrizio Milo committed
58
59
60
61
62
63
64
65
66
        assert isinstance(
            self.tokenizer,
            (
                transformers.GPT2Tokenizer,
                transformers.GPT2TokenizerFast,
                transformers.T5Tokenizer,
                transformers.T5TokenizerFast,
            ),
        ), "this tokenizer has not been checked for compatibility yet!"
67

68
        self.vocab_size = self.tokenizer.vocab_size
69

Fabrizio Milo's avatar
Fabrizio Milo committed
70
71
72
73
74
75
76
77
78
        if isinstance(
            self.tokenizer, (transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast)
        ):
            assert self.tokenizer.encode("hello\n\nhello") == [
                31373,
                198,
                198,
                31373,
            ], self.tokenizer.encode("hello\n\nhello")
Leo Gao's avatar
Leo Gao committed
79

80
        # multithreading and batching
81
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
82

Leo Gao's avatar
Leo Gao committed
83
        # TODO: fix multi-gpu
84
        # gpus = torch.cuda.device_count()
Leo Gao's avatar
Leo Gao committed
85
86
        # if gpus > 1:
        #     self.gpt2 = nn.DataParallel(self.gpt2)
87

88
89
90
91
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id
92

93
94
95
96
97
98
99
    @property
    def max_length(self):
        try:
            return self.gpt2.config.n_ctx
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
            return self.gpt2.config.max_position_embeddings
100

101
102
103
    @property
    def max_gen_toks(self):
        return 256
Leo Gao's avatar
Leo Gao committed
104

105
106
107
108
    @property
    def batch_size(self):
        # TODO: fix multi-gpu
        return self.batch_size_per_gpu  # * gpus
Leo Gao's avatar
Leo Gao committed
109

110
111
112
113
    @property
    def device(self):
        # TODO: fix multi-gpu
        return self._device
Leo Gao's avatar
Leo Gao committed
114

115
116
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
Fabrizio Milo's avatar
Fabrizio Milo committed
117

118
119
120
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

Leo Gao's avatar
Leo Gao committed
121
122
123
124
125
126
    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
127
        logits returned from the model
Leo Gao's avatar
Leo Gao committed
128
        """
129
        with torch.no_grad():
130
            return self.gpt2(inps)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
131

132
133
    def _model_generate(self, context, max_length, eos_token_id):
        return self.gpt2.generate(
Fabrizio Milo's avatar
Fabrizio Milo committed
134
            context, max_length=max_length, eos_token_id=eos_token_id, do_sample=False
135
136
137
        )


138
139
# for backwards compatibility
GPT2LM = HFLM