gpt2.py 5.07 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
2
import transformers
import torch
3
from lm_eval.base import BaseLM
Jason Phang's avatar
gpt3  
Jason Phang committed
4
5


6
class HFLM(BaseLM):
cjlovering's avatar
cjlovering committed
7
8
9
10
11
12
13
14
15
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
16
17
18
19
20
21
22
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

        if device:
23
            self._device = torch.device(device)
24
        else:
cjlovering's avatar
cjlovering committed
25
26
27
28
29
            self._device = (
                torch.device("cuda")
                if torch.cuda.is_available()
                else torch.device("cpu")
            )
30
31

        # TODO: update this to be less of a hack once subfolder is fixed in HF
32
        self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained(
cjlovering's avatar
cjlovering committed
33
34
            pretrained,
            revision=revision + ("/" + subfolder if subfolder is not None else ""),
35
        ).to(self.device)
36
37
        self.gpt2.eval()

38
39
        # pretrained tokenizer for neo is broken for now so just hard-coding this to gpt2
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
cjlovering's avatar
cjlovering committed
40
41
42
43
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
            subfolder=subfolder,
        )
44

cjlovering's avatar
cjlovering committed
45
46
47
48
49
50
51
52
53
        assert isinstance(
            self.tokenizer,
            (
                transformers.GPT2Tokenizer,
                transformers.GPT2TokenizerFast,
                transformers.T5Tokenizer,
                transformers.T5TokenizerFast,
            ),
        ), "this tokenizer has not been checked for compatibility yet!"
54
55
56

        self.vocab_size = self.tokenizer.vocab_size

cjlovering's avatar
cjlovering committed
57
58
59
60
61
62
63
64
65
        if isinstance(
            self.tokenizer, (transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast)
        ):
            assert self.tokenizer.encode("hello\n\nhello") == [
                31373,
                198,
                198,
                31373,
            ], self.tokenizer.encode("hello\n\nhello")
66
67

        # multithreading and batching
68
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
69
70

        # TODO: fix multi-gpu
71
        # gpus = torch.cuda.device_count()
72
73
        # if gpus > 1:
        #     self.gpt2 = nn.DataParallel(self.gpt2)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        try:
            return self.gpt2.config.n_ctx
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
            return self.gpt2.config.max_position_embeddings

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        # TODO: fix multi-gpu
        return self.batch_size_per_gpu  # * gpus

    @property
    def device(self):
        # TODO: fix multi-gpu
        return self._device

102
103
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
cjlovering's avatar
cjlovering committed
104

105
106
107
108
109
110
111
112
113
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
114
        logits returned from the model
115
116
117
        """
        with torch.no_grad():
            return self.gpt2(inps)[0][:, :, :50257]
cjlovering's avatar
cjlovering committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def _get_stopping_criteria(self, stopping_criteria_ids):
        class MultitokenEOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_seq_id: torch.LongTensor, tokenizer):
                self.eos_seq = tokenizer.decode(eos_seq_id)
                self.eos_seq_id = eos_seq_id
                self.eos_seq_len = len(eos_seq_id) + 1
                self.tokenizer = tokenizer

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                last_token_id = input_ids[0, -self.eos_seq_len:]
                last_tokens = self.tokenizer.decode(last_token_id)
                is_stopped = self.eos_seq in last_tokens
                return is_stopped
        
        class EOSCriteria(transformers.StoppingCriteria):
            def __init__(self, eos_token_id: torch.LongTensor):
                self.eos_token_id = eos_token_id

            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids[0,-1] == self.eos_token_id
         
        return transformers.StoppingCriteriaList([
            MultitokenEOSCriteria(stopping_criteria_ids, self.tokenizer),
            EOSCriteria(stopping_criteria_ids)
        ])

    def _model_generate(self, context, max_length, stopping_criteria_ids):
        stopping_criteria = self._get_stopping_criteria(stopping_criteria_ids)
147
        return self.gpt2.generate(
148
149
150
151
            context, 
            max_length=max_length, 
            stopping_criteria=stopping_criteria,
            do_sample=False,
152
        )
153
        
154
155


156
157
# for backwards compatibility
GPT2LM = HFLM