metrics.py 14.7 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
from collections import defaultdict
5
from collections.abc import Iterable
6
from typing import List
7

Baber Abbasi's avatar
Baber Abbasi committed
8
import evaluate as hf_evaluate
9
10
11
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
12

13
from lm_eval.api.registry import register_aggregation, register_metric
14

lintangsutawika's avatar
lintangsutawika committed
15

16
eval_logger = logging.getLogger("lm-eval")
17

18

19
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
20
21
22
23
24
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


25
26
27
28
29
30
31
32
33
34
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


35
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
36
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
120
121
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    # Certain datasets like arc_easy can have a different number of choices.
    golds, predictions = list(zip(*items))

    pred_group = defaultdict(list)
    gold_group = defaultdict(list)
    for gold, pred in zip(golds, predictions):
        pred_group[len(pred)].append(pred)
        gold_group[len(pred)].append(gold)

    total_size = 0
    average = 0
    for g, p in zip(gold_group.values(), pred_group.values()):
        _p = np.array(p)
        _g = np.array(g)
136
        average += np.mean(np.sum((_p - _g) ** 2, axis=1)) * len(_g)
137
138
        total_size += len(_g)

lintangsutawika's avatar
lintangsutawika committed
139
    return average / total_size
lintangsutawika's avatar
lintangsutawika committed
140
141
142
143
144
145
146
147
148
149
150
151


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


152
153
154
155
156
157
158
159
160
161
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


162
163
164
165
166
167
168
169
170
171
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


172
173
174
175
176
177
178
179
180
181
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


Baber Abbasi's avatar
Baber Abbasi committed
182
exact_match = hf_evaluate.load("exact_match")
183
184


185
186
187
188
189
190
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
191
192
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
193
194


195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
234

Leo Gao's avatar
Leo Gao committed
235
def pop_stddev(arr):
236
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
237
238
239
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
240
def sample_stddev(arr):
241
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
242
243
244
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
245
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
246
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
247
248


Baber Abbasi's avatar
Baber Abbasi committed
249
250
251
252
253
254
255
256
257
258
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
259
260
261
262
263
264
265
266
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
267
268
269


@register_metric(
270
    metric="f1",
271
272
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
273
    aggregation="f1",
274
)
275
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
276
    return items
277
278


279
280
281
@register_metric(
    metric="bleu",
    higher_is_better=True,
282
    output_type="generate_until",
283
284
285
286
287
288
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


289
290
291
@register_metric(
    metric="chrf",
    higher_is_better=True,
292
    output_type="generate_until",
293
294
295
296
297
298
299
300
301
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
302
    output_type="generate_until",
303
304
305
306
307
308
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
351
352
353
354
355
356
357
358
359
360

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
401
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
402
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
403
404
        self.f = f
        self.n = n
405

Leo Gao's avatar
Leo Gao committed
406
407
408
409
410
411
412
413
414
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
415

416
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
417
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
418

Leo Gao's avatar
Leo Gao committed
419
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
420
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
421
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
422
423
424
425
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
426
    res = []
427
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
428
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
429

Leo Gao's avatar
Leo Gao committed
430
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
431
432
    for bootstrap in tqdm(
        pool.imap(
433
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
434
435
436
437
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
438
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
439
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
440

Leo Gao's avatar
Leo Gao committed
441
    pool.close()
Leo Gao's avatar
Leo Gao committed
442
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
443
444


445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
462
463
464
465
466
467
468
469
470
471


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
472
473
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
474
475
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
476
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
477
478
    ) / (sum(sizes) - len(sizes))

479
    return np.sqrt(pooled_sample_var / sum(sizes))
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
518
    if not weight_by_size:
519
520
521
522
523
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)