metrics.py 7.41 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# MIT License
#
# Copyright (c) 2023 THU-KEG & Zhipu AI
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import re
import string
from collections import Counter

try:
    import jieba
    from fuzzywuzzy import fuzz
    from rouge import Rouge
except ImportError:
    raise ImportError(
        'Please install the required dependencies for this task with `pip install lm_eval["longbench"] or `pip install jeiba fuzzywuzzy rouge`'
    )

# taken from https://github.com/THUDM/LongBench


def normalize_answer(s: str) -> str:
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def normalize_zh_answer(s: str) -> str:
    """Lower text and remove punctuation, extra whitespace."""

    def white_space_fix(text):
        return "".join(text.split())

    def remove_punc(text):
        cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
        all_punctuation = set(string.punctuation + cn_punctuation)
        return "".join(ch for ch in text if ch not in all_punctuation)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_punc(lower(s)))


def count_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    numbers = re.findall(r"\d+", prediction)
    right_num = 0
    for number in numbers:
        if str(number) == str(ground_truth):
            right_num += 1
    final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
    return float(final_score)


def retrieval_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    pattern = r"Paragraph (\d+)"
    matches = re.findall(pattern, ground_truth)
    ground_truth_id = matches[0]
    numbers = re.findall(r"\d+", prediction)
    right_num = 0
    for number in numbers:
        if str(number) == str(ground_truth_id):
            right_num += 1
    final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
    return float(final_score)


def retrieval_zh_score(
    predictions: list[str], references: list[str], **kwargs
) -> float:
    prediction, ground_truth = predictions[0], references[0]
    pattern = r"段落(\d+)"
    matches = re.findall(pattern, ground_truth)
    ground_truth_id = matches[0]
    numbers = re.findall(r"\d+", prediction)
    right_num = 0
    for number in numbers:
        if str(number) == str(ground_truth_id):
            right_num += 1
    final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
    return float(final_score)


def code_sim_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    all_lines = prediction.lstrip("\n").split("\n")
    prediction = ""
    for line in all_lines:
        if ("`" not in line) and ("#" not in line) and ("//" not in line):
            prediction = line
            break
    return fuzz.ratio(prediction, ground_truth) / 100


def classification_score(
    predictions: list[str], references: list[str], **kwargs
) -> float:
    prediction, ground_truth = predictions[0], references[0]
    em_match_list = []
    all_classes = kwargs["all_classes"]
    for class_name in all_classes:
        if class_name in prediction:
            em_match_list.append(class_name)
    for match_term in em_match_list:
        if match_term in ground_truth and match_term != ground_truth:
            em_match_list.remove(match_term)
    if ground_truth in em_match_list:
        score = 1.0 / len(em_match_list)
    else:
        score = 0.0
    return score


def rouge_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    rouge = Rouge()
    try:
        scores = rouge.get_scores([prediction], [ground_truth], avg=True)
        # ruff: noqa
    except:
        return 0.0
    return scores["rouge-l"]["f"]


def rouge_zh_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
    ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
    score = rouge_score([prediction], [ground_truth])
    return score


def f1_score(predictions: list[str], references: list[str], **kwargs):
    try:
        prediction, ground_truth = predictions[0], references[0]
    except:
        return 0.0
    common = Counter(prediction) & Counter(ground_truth)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction)
    recall = 1.0 * num_same / len(ground_truth)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def qa_f1_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    normalized_prediction = normalize_answer(prediction)
    normalized_ground_truth = normalize_answer(ground_truth)

    prediction_tokens = normalized_prediction.split()
    ground_truth_tokens = normalized_ground_truth.split()
    try:
        res = f1_score(prediction_tokens, ground_truth_tokens)
    except:
        return 0.0
    return res


def qa_f1_zh_score(predictions: list[str], references: list[str], **kwargs) -> float:
    prediction, ground_truth = predictions[0], references[0]
    prediction_tokens = list(jieba.cut(prediction, cut_all=False))
    ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
    prediction_tokens = [normalize_zh_answer(token) for token in prediction_tokens]
    ground_truth_tokens = [normalize_zh_answer(token) for token in ground_truth_tokens]
    prediction_tokens = [token for token in prediction_tokens if len(token) > 0]
    ground_truth_tokens = [token for token in ground_truth_tokens if len(token) > 0]
    return f1_score(prediction_tokens, ground_truth_tokens)