wsc273.py 5.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
import random
from lm_eval.base import rf, mean
from . common import HFTask

"""
NOTE: This evaluation of Winograd Schema Challenge is based on `partial evaluation`
as described by Trinh & Le in Simple Method for Commonsense Reasoning (2018).
See: https://arxiv.org/abs/1806.02847
"""


class WinogradSchemaChallenge273(HFTask):
    DATASET_PATH = "winograd_wsc"
    DATASET_NAME = "wsc273"

    upper_pronouns = ["A", "An", "The", "She", "He",
                      "It", "They", "My", "His", "Her", "Their"]

    def __init__(self):
        super().__init__()
        self.data = self.__clean_data()

    def __clean_data(self):
        # The HF implementation of `wsc273` is not `partial evaluation` friendly.
        data = []
        for doc in self.data["test"]:
            doc["text"] = doc["text"].replace("  ", " ")
29
30
            doc["options"][0] = self.__normalize_option(doc, doc["options"][0])
            doc["options"][1] = self.__normalize_option(doc, doc["options"][1])
31
32
33
            data.append(doc)
        return {"test": data}

34
    def __normalize_option(self, doc, option):
35
        # Append `'s` to possessive determiner based options.
36
        if doc["pronoun"].lower() in ["my", "his", "her", "our", "their"]:
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            option += "'s"
        # Appropriately lowercase the pronoun in the option.
        pronoun = option.split()[0]
        start_of_sentence = doc["text"][doc['pronoun_loc'] - 2] == '.'
        if not start_of_sentence and pronoun in self.upper_pronouns:
            return option.replace(pronoun, pronoun.lower())
        return option

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

54
55
56
57
58
59
60
61
62
    def fewshot_description(self):
        # TODO: redo description
        return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."

    def fewshot_examples(self, k):
        # NOTE: `super().fewshot_examples` samples from training docs which are
        # not available for this test-set-only dataset.
        return random.sample(list(self.test_docs()), k)

63
64
    def doc_to_text(self, doc):
        return self.partial_context(doc, doc["options"][doc["label"]])
65
66

    @classmethod
67
68
69
70
71
72
    def partial_context(cls, doc, option):
        # Substitute the pronoun in the original text with the specified
        # option and ignore everything after.
        return doc["text"][:doc["pronoun_loc"]] + option

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
73
        return self.partial_target(doc)
74
75
76
77
78

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        start_index = doc["pronoun_loc"] + len(doc["pronoun"])
Leo Gao's avatar
Leo Gao committed
79
        return " " + doc["text"][start_index:].strip()
80
81

    def construct_requests(self, doc, ctx):
82
        """Uses RequestFactory to construct Requests and returns an iterable of
83
84
85
86
87
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
88
            The context string, generated by fewshot_context. This includes the natural
89
            language description, as well as the few shot examples, and the question
90
            part of the document for `doc`.
91
92
        """
        target = self.partial_target(doc)
93
        right_ctx, wrong_ctx = ctx, self._wrong_context(doc, ctx)
94
95
96
97
        ll_right_ctx, _ = rf.loglikelihood(right_ctx, target)
        ll_wrong_ctx, _ = rf.loglikelihood(wrong_ctx, target)
        return ll_right_ctx, ll_wrong_ctx

98
99
100
101
    def _wrong_context(self, doc, ctx):
        wrong_answer = int(not doc["label"])
        wrong_option = doc["options"][wrong_answer]
        wrong_ctx = self.partial_context(doc, wrong_option)
102
        ctx = ctx.split("\n\n")  # Each fewshot context is on its own new line.
103
104
        ctx.pop()  # Remove the correct context.
        return "\n\n".join([*ctx, wrong_ctx]) if ctx else wrong_ctx
105
106

    def process_results(self, doc, results):
107
108
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        return {
            "acc": np.argmax(results) == doc["label"]
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
123
            A dictionary where keys are the names of submetrics and values are
124
125
126
127
128
129
130
131
132
            functions that aggregate a list of metrics
        """
        return {
            "acc": mean
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
133
            A dictionary where keys are the names of submetrics and values are
134
135
136
137
138
            whether a higher value of the submetric is better
        """
        return {
            "acc": True
        }