main.py 7.02 KB
Newer Older
1
2
import csv
import os
3
import time
4
5
6
7
8
9
10
11
12

import click
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer


@click.command()
@click.argument("datadir", required=True)
def main(datadir):
13
    model_runner = ModelRunner.create()
14
15
16
17
18
19

    with open(
        os.path.join(datadir, "cloze_test_test__spring2016 - cloze_test_ALL_test.csv")
    ) as f:
        storycloze_test_examples = list(csv.DictReader(f))

20
21
22
23
24
25
    start_time = time.time()
    example_evaluations = evaluate_examples(model_runner, storycloze_test_examples)
    end_time = time.time()
    print(
        f"Total time for {len(storycloze_test_examples)} examples: {end_time - start_time}"
    )
26
27
28
29
30
31
32
33
34
35
    fraction_correct = len(
        [
            evaluation
            for evaluation in example_evaluations
            if evaluation["was_model_correct"]
        ]
    ) / float(len(example_evaluations))
    print(f"Fraction correct: {fraction_correct}")


36
37
38
39
40
41
42
43
44
45
def evaluate_examples(model_runner, examples):
    prompts = [
        "{} {} {} {}".format(
            example["InputSentence1"],
            example["InputSentence2"],
            example["InputSentence3"],
            example["InputSentence4"],
        )
        for example in examples
    ]
46

47
48
49
50
51
52
53
54
55
56
57
    inputs_for_sentence_1 = [
        prompt + " " + example["RandomFifthSentenceQuiz1"]
        for prompt, example in zip(prompts, examples)
    ]
    inputs_for_sentence_2 = [
        prompt + " " + example["RandomFifthSentenceQuiz2"]
        for prompt, example in zip(prompts, examples)
    ]

    average_token_logits_with_sentence_1 = (
        model_runner.compute_average_token_logits_on_batch(inputs_for_sentence_1)
58
    )
59
60
    average_token_logits_with_sentence_2 = (
        model_runner.compute_average_token_logits_on_batch(inputs_for_sentence_2)
61
62
    )

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    evaluation_results = []
    for i in range(len(examples)):
        if (
            average_token_logits_with_sentence_1[i]
            > average_token_logits_with_sentence_2[i]
        ):
            model_answer = examples[i]["RandomFifthSentenceQuiz1"]
            model_answer_code = "1"
        else:
            model_answer = examples[i]["RandomFifthSentenceQuiz2"]
            model_answer_code = "2"

        evaluation_results.append(
            {
                "model_answer": model_answer,
                "was_model_correct": model_answer_code
                == examples[i]["AnswerRightEnding"],
            }
        )
    return evaluation_results


class ModelRunner:
    def __init__(self):
        self.inference_requests = []
        self.num_inferences = 0

        self.model = None
        self.tokenizer = None

    @classmethod
    def create(cls):
        model_runner = cls()

        model_runner.model = AutoModelForCausalLM.from_pretrained(
            # 117M
            pretrained_model_name_or_path="gpt2",
            config=AutoConfig.from_pretrained(
                "gpt2",
                # <|endoftext|>
                pad_token_id=50256,
            ),
        ).to("cuda")
        model_runner.model = model_runner.model.eval()
        model_runner.tokenizer = AutoTokenizer.from_pretrained("gpt2")
        model_runner.tokenizer.pad_token = "<|endoftext|>"

        prompt = "The quick brown fox jumps over"
        encoded_prompt = model_runner.tokenizer.encode(
            prompt, add_special_tokens=False, return_tensors="pt"
        ).to("cuda")

        # Sanity check the model
        [output_token_ids] = model_runner.model.generate(
            input_ids=encoded_prompt,
            max_length=100,
            tempareture=0,
            do_sample=False,
            num_return_sequences=1,
        )
        decoded_output = model_runner.tokenizer.decode(output_token_ids.tolist())
        # Next word should be "the" ("The quick brown fox jumps over *the*...")
        assert decoded_output[len(prompt + " ") :].startswith("the")

        return model_runner

    def compute_average_token_logits_on_batch(self, input_texts):
        """
        For each input text in the batch, compute the average logit (log-likelihood) over all tokens.

        For example, if an input sequence is 3 tokens long, and the token logits are [-1, -2, -3], the "average token logit" is -2.
        """
        # The ModelRunner can take a big batch on input_texts, and it can be as large as the caller wants.
        # But to prevent the GPU from running out of memory, we need to subdivide the overall batch
        # into "GPU batches", and the "GPU batch size" depends on the model and hardware.
        # For GPT-2-117M, a GPU can process a batch of roughly 10 or so inputs before the inference latency starts to increase.
        gpu_batch_size = 20

        average_token_logits = []
        for i in range(0, len(input_texts), gpu_batch_size):
            average_token_logits.extend(
                self._average_token_logits_on_gpu_batch(
                    input_texts[i : i + gpu_batch_size]
                )
            )
        return average_token_logits

    def _average_token_logits_on_gpu_batch(self, input_texts):
        tokenized_inputs = self.tokenizer(
            input_texts,
            add_special_tokens=False,
            return_tensors="pt",
            padding="longest",
        )[
            # https://github.com/huggingface/transformers/issues/5480#issuecomment-653259416
            "input_ids"
        ].to(
            "cuda"
        )

        start_time = time.time()
        output_logits = self.model(tokenized_inputs).logits
        self.num_inferences += 1

        # Align the output logits to the input tokens.
        logits_for_input_positions = output_logits[
            # The batch dimension
            :,
            # The position dimension
            # The last logit needs to be dropped, because it's predicting the "next token", and it doesn't correspond to any input token
            :-1,
            # The embedding dimension
            :,
        ]
        input_tokens_at_positions_with_logits = tokenized_inputs[
            # The batch dimension
            :,
            # The position dimension
            # The model does not predict the first input token, so the first token needs to be dropped.
            1:,
        ]
        # At each position, the model outputs ~50k logits, one for every possible token.
        # To get the logits of the tokens that were actually provided, we need to select the right logit at each position.
        logits_for_provided_tokens = torch.gather(
            logits_for_input_positions,
            2,
            input_tokens_at_positions_with_logits.unsqueeze(2),
        ).squeeze(2)

        mask_for_non_padded_positions = input_tokens_at_positions_with_logits != 50256
        average_token_logits = (
            logits_for_provided_tokens * mask_for_non_padded_positions
        ).sum(1) / mask_for_non_padded_positions.sum(1)
        average_token_logits = average_token_logits.tolist()

        end_time = time.time()
        print(
            f"Time to evaluate once (inference #{self.num_inferences}): {end_time - start_time}"
        )
        return average_token_logits
203
204
205


if __name__ == "__main__":
206
    main()