niah_utils.py 4.73 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import itertools
import logging
from typing import Generator

import datasets

from lm_eval.tasks.ruler.common_utils import DEFAULT_SEQ_LENGTHS, get_tokenizer
from lm_eval.tasks.ruler.prepare_niah import generate_samples, get_haystack


TEMPLATE = """Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text?"""
eval_logger = logging.getLogger(__name__)


def download_dataset(df: Generator) -> dict[str, datasets.Dataset]:
    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }


def niah_single_1(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="repeat"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="repeat",
            type_needle_k="words",
            type_needle_v="numbers",
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_single_2(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_single_3(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="uuids",
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_multikey_1(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_k=4,
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_multikey_2(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="needle"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="needle",
            type_needle_k="words",
            type_needle_v="numbers",
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_multikey_3(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="needle"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="needle",
            type_needle_k="uuids",
            type_needle_v="uuids",
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_multivalue(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_v=4,
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )


def niah_multiquery(**kwargs):
    seq_lengths = kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    return download_dataset(
        generate_samples(
            get_haystack(type_haystack="essay"),
            max_seq_length=seq,
            template=TEMPLATE,
            type_haystack="essay",
            type_needle_k="words",
            type_needle_v="numbers",
            num_needle_q=4,
            num_samples=500,
            TOKENIZER=get_tokenizer(**kwargs),
        )
        for seq in seq_lengths
    )