cwe_utils.py 5.95 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import itertools
import random

import datasets
import wonderwords
from tqdm import tqdm

from lm_eval.tasks.ruler.common_utils import DEFAULT_SEQ_LENGTHS, get_tokenizer


CONFIG = {
    "tokens_to_generate": 120,
    "template": """Below is a numbered list of words. In these words, some appear more often than others. Memorize the ones that appear most often.\n{context}\nQuestion: What are the 10 most common words in the above list?""",
    "answer_prefix": """ Answer: The top 10 words that appear most often in the list are:""",
}

RNG = random.Random(42)
TEMPLATE = CONFIG["template"] + CONFIG["answer_prefix"]


r = wonderwords.RandomWord()
WORDS = sorted(
    list(
        set([item for x in ["noun", "adjective", "verb"] for item in r._categories[x]])
    )
)
RNG.shuffle(WORDS)


def get_example(num_words, common_repeats=30, uncommon_repeats=3, common_nums=10):
    word_list_full = random.sample(WORDS, num_words)
    common, uncommon = word_list_full[:common_nums], word_list_full[common_nums:]
    word_list = common * int(common_repeats) + uncommon * int(uncommon_repeats)
    RNG.shuffle(word_list)

    # Formatting the word list as "1. word1 2. word2 3. word3 ..."
    context = " ".join([f"{i + 1}. {word}" for i, word in enumerate(word_list)])

    return context, common


def generate_input_output(
    num_words: int,
    max_seq_length: int,
    freq_cw: int = 30,
    freq_ucw: int = 3,
    num_cw: int = 10,
):
    if max_seq_length < 4096:
        context_example, answer_example = get_example(20, 3, 1, num_cw)
        context, answer = get_example(num_words, 6, 1, num_cw)
    else:
        context_example, answer_example = get_example(40, 10, 3, num_cw)
        context, answer = get_example(num_words, freq_cw, freq_ucw, num_cw)

    template = TEMPLATE

    input_example = template.format(
        context=context_example,
        query="",
    ) + " ".join([f"{i + 1}. {word}" for i, word in enumerate(answer_example)])

    input_text = template.format(
        context=context,
        query="",
    )

    return input_example, input_text, answer


def sys_word_pair_random(
    num_samples: int,
    max_seq_length: int,
    tokenizer=None,
    incremental: int = 10,
    remove_newline_tab=False,
    tokens_to_generate=120,
):
    assert tokenizer is not None, "Tokenizer is not provided."
    write_jsons = []
    tokens_to_generate = tokens_to_generate

    # Find the perfect num_words
    num_words = incremental

    total_tokens = 0
    while total_tokens + tokens_to_generate < max_seq_length:
        input_example, input_text, answer = generate_input_output(
            num_words, max_seq_length
        )
        # Calculate the number of tokens in the example
        total_tokens = len(
            tokenizer(
                input_example
                + "\n"
                + input_text
                + " "
                + " ".join([f"{i + 1}. {word}" for i, word in enumerate(answer)])
            ).input_ids
        )
        # print(
        #     f"Max length {max_seq_length} | Current length {total_tokens + tokens_to_generate} | Words: {num_words}"
        # )
        if total_tokens + tokens_to_generate > max_seq_length:
            num_words -= incremental
            break

        num_words += incremental
        if num_words > len(WORDS):
            num_words = len(WORDS)
            break

    # print("num_words:", num_words)

    # Generate samples
    for index in tqdm(
        range(num_samples), desc=f"Generating CWE Samples | {max_seq_length}"
    ):
        used_words = num_words
        while True:
            try:
                input_example, input_text, answer = generate_input_output(
                    used_words, max_seq_length
                )
                length = len(tokenizer(input_text).input_ids) + tokens_to_generate
                assert length <= max_seq_length, f"{length} exceeds max_seq_length."
                break
            except:  # noqa: E722
                if used_words > incremental:
                    used_words -= incremental

        if remove_newline_tab:
            input_text = " ".join(
                input_text.replace("\n", " ").replace("\t", " ").strip().split()
            )
            input_example = " ".join(
                input_example.replace("\n", " ").replace("\t", " ").strip().split()
            )

        gen_prefix_index = input_text.rfind(CONFIG["answer_prefix"])
        input_text = input_text[:gen_prefix_index]
        formatted_output = {
            "index": index,
            "input": input_text.strip(),
            "input_example": input_example,
            "outputs": answer,
            "length": length,
            "max_length": max_seq_length,
            "gen_prefix": CONFIG["answer_prefix"].strip(),
        }
        write_jsons.append(formatted_output)

    return write_jsons


def get_dataset(pretrained, seq=None, **kwargs):
    tokenizer = get_tokenizer(pretrained)
    write_jsons = sys_word_pair_random(
        num_samples=500, max_seq_length=seq, tokenizer=tokenizer
    )
    return write_jsons


def get_cw_dataset(**kwargs):
    pretrained = kwargs.get("tokenizer", kwargs.get("pretrained", {}))
    df = (
        get_dataset(pretrained, seq=seq)
        for seq in kwargs.pop("max_seq_lengths", DEFAULT_SEQ_LENGTHS)
    )

    return {
        "test": datasets.Dataset.from_list(
            list(itertools.chain.from_iterable(df)), split=datasets.Split.TEST
        )
    }