utils.py 2.65 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import json
import os

import numpy as np
from metrics import (
    classification_score,
    code_sim_score,
    count_score,
    qa_f1_score,
    qa_f1_zh_score,
    retrieval_score,
    retrieval_zh_score,
    rouge_score,
    rouge_zh_score,
)


dataset2metric = {
    "narrativeqa": qa_f1_score,
    "qasper": qa_f1_score,
    "multifieldqa_en": qa_f1_score,
    "multifieldqa_zh": qa_f1_zh_score,
    "hotpotqa": qa_f1_score,
    "2wikimqa": qa_f1_score,
    "musique": qa_f1_score,
    "dureader": rouge_zh_score,
    "gov_report": rouge_score,
    "qmsum": rouge_score,
    "multi_news": rouge_score,
    "vcsum": rouge_zh_score,
    "trec": classification_score,
    "triviaqa": qa_f1_score,
    "samsum": rouge_score,
    "lsht": classification_score,
    "passage_retrieval_en": retrieval_score,
    "passage_count": count_score,
    "passage_retrieval_zh": retrieval_zh_score,
    "lcc": code_sim_score,
    "repobench-p": code_sim_score,
}

# def parse_args(args=None):
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--model', type=str, default=None)
#     parser.add_argument('--e', action='store_true', help="Evaluate on LongBench-E")
#     return parser.parse_args(args)


def scorer_e(dataset, predictions, answers, lengths, all_classes):
    scores = {"0-4k": [], "4-8k": [], "8k+": []}
    for prediction, ground_truths, length in zip(predictions, answers, lengths):
        score = 0.0
        if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
            prediction = prediction.lstrip("\n").split("\n")[0]
        for ground_truth in ground_truths:
            score = max(
                score,
                dataset2metric[dataset](
                    prediction, ground_truth, all_classes=all_classes
                ),
            )
        if length < 4000:
            scores["0-4k"].append(score)
        elif length < 8000:
            scores["4-8k"].append(score)
        else:
            scores["8k+"].append(score)
    for key in scores.keys():
        scores[key] = round(100 * np.mean(scores[key]), 2)
    return scores


def scorer(dataset, predictions, answers, all_classes):
    total_score = 0.0
    for prediction, ground_truths in zip(predictions, answers):
        score = 0.0
        if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
            prediction = prediction.lstrip("\n").split("\n")[0]
        for ground_truth in ground_truths:
            score = max(
                score,
                dataset2metric[dataset](
                    prediction, ground_truth, all_classes=all_classes
                ),
            )
        total_score += score
    return round(100 * total_score / len(predictions), 2)